gjson/gjson.go
2016-08-21 10:10:55 -07:00

790 lines
19 KiB
Go

// Package gjson provides searching for json strings.
package gjson
import "strconv"
// Type is Result type
type Type int
const (
// Null is a null json value
Null Type = iota
// False is a json false boolean
False
// Number is json number
Number
// String is a json string
String
// True is a json true boolean
True
// JSON is a raw block of JSON
JSON
// Multi is a subset of results
Multi
)
// Result represents a json value that is returned from Get().
type Result struct {
// Type is the json type
Type Type
// Raw is the raw json
Raw string
// Str is the json string
Str string
// Num is the json number
Num float64
// Multi is the subset of results
Multi []Result
}
// String returns a string representation of the value.
func (t Result) String() string {
switch t.Type {
default:
return "null"
case False:
return "false"
case Number:
return strconv.FormatFloat(t.Num, 'f', -1, 64)
case String:
return t.Str
case Multi:
var str string
for i, res := range t.Multi {
if i > 0 {
str += ","
}
str += res.String()
}
return str
case JSON:
return t.Raw
case True:
return "true"
}
}
// Exists returns true if value exists.
//
// if gjson.Get(json, "name.last").Exists(){
// println("value exists")
// }
func (t Result) Exists() bool {
return t.Type != Null || len(t.Raw) != 0
}
// Value returns one of these types:
//
// bool, for JSON booleans
// float64, for JSON numbers
// Number, for JSON numbers
// string, for JSON string literals
// nil, for JSON null
//
func (t Result) Value() interface{} {
if t.Type == String {
return t.Str
}
switch t.Type {
default:
return nil
case False:
return false
case Number:
return t.Num
case Multi:
var res = make([]interface{}, len(t.Multi))
for i, v := range t.Multi {
res[i] = v.Value()
}
return res
case JSON:
return t.Raw
case True:
return true
}
}
type part struct {
wild bool
key string
}
type frame struct {
key string
count int
stype byte
}
// Get searches json for the specified path.
// A path is in dot syntax, such as "name.last" or "age".
// This function expects that the json is well-formed, and does not validate.
// Invalid json will not panic, but it may return back unexpected results.
// When the value is found it's returned immediately.
//
// A path is a series of keys seperated by a dot.
// A key may contain special wildcard characters '*' and '?'.
// To access an array value use the index as the key.
// To get the number of elements in an array or to access a child path, use the '#' character.
// The dot and wildcard character can be escaped with '\'.
//
// {
// "name": {"first": "Tom", "last": "Anderson"},
// "age":37,
// "children": ["Sara","Alex","Jack"],
// "friends": [
// {"first": "James", "last": "Murphy"},
// {"first": "Roger", "last": "Craig"}
// ]
// }
// "name.last" >> "Anderson"
// "age" >> 37
// "children.#" >> 3
// "children.1" >> "Alex"
// "child*.2" >> "Jack"
// "c?ildren.0" >> "Sara"
// "friends.#.first" >> [ "James", "Roger" ]
//
func Get(json string, path string) Result {
var s int // starting index variable
var wild bool // wildcard indicator
var parts = make([]part, 0, 4) // parsed path parts
var arrch bool
var alogok bool
var alogkey string
var alog []int
if len(path) == 0 {
// do nothing when no path specified and return an empty result.
return Result{}
}
// parse the path into multiple parts.
for i := 0; i < len(path); i++ {
next_part:
// be optimistic that the path mostly contains lowercase and
// underscore characters.
if path[i] >= '_' {
continue
} else if path[i] == '.' {
// append a new part
parts = append(parts, part{wild: wild, key: path[s:i]})
if wild {
wild = false // reset the wild flag
}
// set the starting index to one past the dot.
s = i + 1
} else if path[i] == '*' || path[i] == '?' {
// set the wild flag to indicate that the part is a wildcard.
wild = true
} else if path[i] == '#' {
arrch = true
if s == i && i+1 < len(path) && path[i+1] == '.' {
alogok = true
alogkey = path[i+2:]
path = path[:i+1]
}
} else if path[i] == '\\' {
// go into escape mode. this is a slower path that
// strips off the escape character from the part.
epart := []byte(path[s:i])
i++
if i < len(path) {
epart = append(epart, path[i])
i++
for ; i < len(path); i++ {
if path[i] == '\\' {
i++
if i < len(path) {
epart = append(epart, path[i])
}
continue
} else if path[i] == '.' {
parts = append(parts, part{wild: wild, key: string(epart)})
if wild {
wild = false
}
s = i + 1
i++
goto next_part
} else if path[i] == '*' || path[i] == '?' {
wild = true
} else if path[i] == '#' {
arrch = true
if s == i && i+1 < len(path) && path[i+1] == '.' {
alogok = true
alogkey = path[i+2:]
path = path[:i+1]
}
}
epart = append(epart, path[i])
}
}
// append the last part
parts = append(parts, part{wild: wild, key: string(epart)})
goto end_parts
}
}
// append the last part
parts = append(parts, part{wild: wild, key: path[s:]})
end_parts:
var i int // index of current json character
var depth int // the current stack depth
var f frame // the current frame
var matched bool // flag used for key/part matching
var stack = make([]frame, 1, 4) // the frame stack
var value Result // the final value, also used for temp store
var vc byte // the current token value chacter type
// look for first delimiter. only allow arrays and objects, other
// json types will fail. it's ok for control characters to passthrough.
for ; i < len(json); i++ {
if json[i] == '{' {
f.stype = '{'
i++
stack[0].stype = f.stype
break
} else if json[i] == '[' {
f.stype = '['
stack[0].stype = f.stype
i++
break
} else if json[i] <= ' ' {
continue
} else {
return Result{}
}
}
// assume that the depth is at least one
depth = 1
// read the next key from the json string
read_key:
if f.stype == '[' {
// for arrays we use the index of the value as the key.
// so "0" is the key for the first value, and "10" is the
// key for the 10th value.
f.key = strconv.FormatInt(int64(f.count), 10)
f.count++
if alogok && depth == len(parts) {
alog = append(alog, i)
}
//f.alog = append(f.alog, i)
} else {
// for objects we must parse the next string. this string will
// become the key that is compared against the path parts.
for ; i < len(json); i++ {
// begin key string reading routine.
if json[i] == '"' {
i++
// set the starting index. the first double-quote has already
// been read.
s = i
// loop through each character in the string looking for the
// the double-quote termination character. it's possible that
// the string contains an escape slash character. if so, we
// must do a nested loop that will look for an isolated
// double-quote terminator.
for ; i < len(json); i++ {
if json[i] > '\\' {
continue
}
if json[i] == '"' {
// a simple string that contains no escape characters.
// assign this to the current frame key and we are
// done parsing the key.
f.key = json[s:i]
i++
break
}
if json[i] == '\\' {
// escape character detected. we now look for the
// the double-quote terminator.
i++
for ; i < len(json); i++ {
if json[i] == '"' {
// possibly the end of the string, but let's
// look to see if the previous character was
// an escape slash. if so then we must keep
// reading backwards to see if the slash has a
// prefixed slashed, and so forth.
if json[i-1] == '\\' {
n := 0
for j := i - 2; j > s-1; j-- {
if json[j] != '\\' {
break
}
n++
}
if n%2 == 0 {
// the double-quote is not a terminator.
// keep reading the string.
continue
}
}
// we found the correct double-quote terminator.
// stop reading the string.
break
}
}
// the string contains escape sequences so we must
// unescape and then assign to the current frame key.
// done parsing the key
f.key = unescape(json[s:i])
i++
break
}
}
break
}
// end of string key reading routine
}
}
// we have a brand new (possibly shiny) key.
// is it the key that we are looking for?
if parts[depth-1].wild {
// the path part contains a wildcard character. we must do a wildcard
// match to determine if it truly matches.
matched = wildcardMatch(f.key, parts[depth-1].key)
} else {
// just a straight up equality check
matched = parts[depth-1].key == f.key
}
// read the value
for ; i < len(json); i++ {
// any thing less than a double-quote is likely whitespace.
// just burn past these.
if json[i] < '"' {
continue
}
// anything less that a dash is likely a double-quote. let's
// assume that it is.
if json[i] < '-' {
i++
vc = '"'
// defer reading the string value until we know for sure
// that we want it. if we don't want it, then we will
// parse it using a quicker method than if we do want it.
goto proc_val
}
// any character less than an open bracket is likely a number.
if json[i] < '[' {
// with one exception, the colon character. we do not care
// about the colon character. just burn past it.
if json[i] == ':' {
continue
}
vc = '0'
s = i
i++
// look for any character that might terminate a number
// break on whitespace, comma, ']', and '}'.
for ; i < len(json); i++ {
// less than dash might have valid characters
if json[i] <= '-' {
if json[i] <= ' ' || json[i] == ',' {
// break on whitespace and comma
break
}
// could be a '+' or '-'. let's assume so.
continue
}
if json[i] < ']' {
// probably a valid number
continue
}
if json[i] == 'e' || json[i] == 'E' {
// allow for exponential numbers
continue
}
// likely a ']' or '}'
break
}
// we have raw number. jump to the process value routine.
goto proc_val
}
// any character less than ']' is likely '['. let's assume
// it's an open-array character.
if json[i] < ']' {
i++
vc = '['
// jump to process delimiter routine.
goto proc_nested
}
// any character less than 'u' likely means tha the value is
// 'true', 'false', or 'null'.
if json[i] < 'u' {
vc = json[i] // assign the vc token character to the actual.
s = i
i++
for ; i < len(json); i++ {
// let's pick up any non-alpha lowercase character as the
// terminator. it doesn't matter.
if json[i] < 'a' || json[i] > 'z' {
break
}
}
// we have raw literal. jump to the process value routine.
goto proc_val
}
// if we reached this far, then the value must be a nested object.
i++
vc = '{'
// jump to process delimiter routine.
goto proc_nested
}
vc = 0
// ran out of json buffer
if i >= len(json) {
return Result{}
}
// process nested array or object
proc_nested:
if (matched && depth == len(parts)) || !matched {
// begin squash
// squash the value, ignoring all nested arrays and objects.
s = i - 1
// the first '[' or '{' has already been read
depth := 1
squash:
for ; i < len(json); i++ {
if json[i] >= '"' && json[i] <= '}' {
switch json[i] {
case '"':
i++
s2 := i
for ; i < len(json); i++ {
if json[i] > '\\' {
continue
}
if json[i] == '"' {
// look for an escaped slash
if json[i-1] == '\\' {
n := 0
for j := i - 2; j > s2-1; j-- {
if json[j] != '\\' {
break
}
n++
}
if n%2 == 0 {
continue
}
}
break
}
}
case '{', '[':
depth++
case '}', ']':
depth--
if depth == 0 {
i++
break squash
}
}
}
}
// end squash
// the 'i' and 's' values should fall-though to the proc_val function
}
// process the value
proc_val:
if matched {
// hit, that's good!
if depth == len(parts) {
switch vc {
case '{', '[':
value.Type = JSON
value.Raw = json[s:i]
case 'n':
value.Type = Null
value.Raw = json[s:i]
case 't':
value.Type = True
value.Raw = json[s:i]
case 'f':
value.Type = False
value.Raw = json[s:i]
case '"':
value.Type = String
// readstr
// the val has not been read yet
// the first double-quote has already been read
s = i
for ; i < len(json); i++ {
if json[i] == '"' {
value.Raw = json[s-1 : i+1]
value.Str = json[s:i]
break
}
if json[i] == '\\' {
i++
for ; i < len(json); i++ {
if json[i] > '\\' {
continue
}
if json[i] == '"' {
// look for an escaped slash
if json[i-1] == '\\' {
n := 0
for j := i - 2; j > s-1; j-- {
if json[j] != '\\' {
break
}
n++
}
if n%2 == 0 {
continue
}
}
break
}
}
value.Raw = json[s-1 : i+1]
value.Str = unescape(json[s:i])
break
}
}
// end readstr
case '0':
value.Type = Number
value.Raw = json[s:i]
value.Num, _ = strconv.ParseFloat(value.Raw, 64)
}
return value
} else {
f = frame{stype: vc}
stack = append(stack, f)
depth++
goto read_key
}
}
if vc == '"' {
// readstr
// the val has not been read yet. we can read and throw away.
// the first double-quote has already been read
s = i
for ; i < len(json); i++ {
if json[i] == '"' {
// look for an escaped slash
if json[i-1] == '\\' {
n := 0
for j := i - 2; j > s-1; j-- {
if json[j] != '\\' {
break
}
n++
}
if n%2 == 0 {
continue
}
}
break
}
}
i++
// end readstr
}
// read to the comma or end of object
for ; i < len(json); i++ {
switch json[i] {
case '}', ']':
if arrch && parts[depth-1].key == "#" {
if alogok {
result := Result{Type: Multi}
for j := 0; j < len(alog); j++ {
res := Get(json[alog[j]:], alogkey)
if res.Exists() {
result.Multi = append(result.Multi, res)
}
}
return result
} else {
return Result{Type: Number, Num: float64(f.count)}
}
}
// step the stack back
depth--
if depth == 0 {
return Result{}
}
stack = stack[:len(stack)-1]
f = stack[len(stack)-1]
case ',':
i++
goto read_key
}
}
return Result{}
}
// unescape unescapes a string
func unescape(json string) string { //, error) {
var str = make([]byte, 0, len(json))
for i := 0; i < len(json); i++ {
switch {
default:
str = append(str, json[i])
case json[i] < ' ':
return "" //, errors.New("invalid character in string")
case json[i] == '\\':
i++
if i >= len(json) {
return "" //, errors.New("invalid escape sequence")
}
switch json[i] {
default:
return "" //, errors.New("invalid escape sequence")
case '\\':
str = append(str, '\\')
case '/':
str = append(str, '/')
case 'b':
str = append(str, '\b')
case 'f':
str = append(str, '\f')
case 'n':
str = append(str, '\n')
case 'r':
str = append(str, '\r')
case 't':
str = append(str, '\t')
case '"':
str = append(str, '"')
case 'u':
if i+5 > len(json) {
return "" //, errors.New("invalid escape sequence")
}
i++
// extract the codepoint
var code int
for j := i; j < i+4; j++ {
switch {
default:
return "" //, errors.New("invalid escape sequence")
case json[j] >= '0' && json[j] <= '9':
code += (int(json[j]) - '0') << uint(12-(j-i)*4)
case json[j] >= 'a' && json[j] <= 'f':
code += (int(json[j]) - 'a' + 10) << uint(12-(j-i)*4)
case json[j] >= 'a' && json[j] <= 'f':
code += (int(json[j]) - 'a' + 10) << uint(12-(j-i)*4)
}
}
str = append(str, []byte(string(code))...)
i += 3 // only 3 because we will increment on the for-loop
}
}
}
return string(str) //, nil
}
// Less return true if a token is less than another token.
// The caseSensitive paramater is used when the tokens are Strings.
// The order when comparing two different type is:
//
// Null < False < Number < String < True < JSON < Multi
//
func (t Result) Less(token Result, caseSensitive bool) bool {
if t.Type < token.Type {
return true
}
if t.Type > token.Type {
return false
}
if t.Type == String {
if caseSensitive {
return t.Str < token.Str
}
return stringLessInsensitive(t.Str, token.Str)
}
if t.Type == Number {
return t.Num < token.Num
}
if t.Type == Multi {
for i := 0; i < len(t.Multi) && i < len(token.Multi); i++ {
if t.Multi[i].Less(token.Multi[i], caseSensitive) {
return true
}
if token.Multi[i].Less(t.Multi[i], caseSensitive) {
return false
}
}
return len(t.Multi) < len(token.Multi)
}
return t.Raw < token.Raw
}
func stringLessInsensitive(a, b string) bool {
for i := 0; i < len(a) && i < len(b); i++ {
if a[i] >= 'A' && a[i] <= 'Z' {
if b[i] >= 'A' && b[i] <= 'Z' {
// both are uppercase, do nothing
if a[i] < b[i] {
return true
} else if a[i] > b[i] {
return false
}
} else {
// a is uppercase, convert a to lowercase
if a[i]+32 < b[i] {
return true
} else if a[i]+32 > b[i] {
return false
}
}
} else if b[i] >= 'A' && b[i] <= 'Z' {
// b is uppercase, convert b to lowercase
if a[i] < b[i]+32 {
return true
} else if a[i] > b[i]+32 {
return false
}
} else {
// neither are uppercase
if a[i] < b[i] {
return true
} else if a[i] > b[i] {
return false
}
}
}
return len(a) < len(b)
}
// wilcardMatch returns true if str matches pattern. This is a very
// simple wildcard match where '*' matches on any number characters
// and '?' matches on any one character.
func wildcardMatch(str, pattern string) bool {
if pattern == "*" {
return true
}
return deepMatch(str, pattern)
}
func deepMatch(str, pattern string) bool {
for len(pattern) > 0 {
switch pattern[0] {
default:
if len(str) == 0 || str[0] != pattern[0] {
return false
}
case '?':
if len(str) == 0 {
return false
}
case '*':
return wildcardMatch(str, pattern[1:]) ||
(len(str) > 0 && wildcardMatch(str[1:], pattern))
}
str = str[1:]
pattern = pattern[1:]
}
return len(str) == 0 && len(pattern) == 0
}