2008-12-10 05:08:54 +00:00
|
|
|
// Copyright 2007, Google Inc.
|
|
|
|
// All rights reserved.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without
|
|
|
|
// modification, are permitted provided that the following conditions are
|
|
|
|
// met:
|
|
|
|
//
|
|
|
|
// * Redistributions of source code must retain the above copyright
|
|
|
|
// notice, this list of conditions and the following disclaimer.
|
|
|
|
// * Redistributions in binary form must reproduce the above
|
|
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
|
|
// in the documentation and/or other materials provided with the
|
|
|
|
// distribution.
|
|
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
|
|
// contributors may be used to endorse or promote products derived from
|
|
|
|
// this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
//
|
|
|
|
// Author: wan@google.com (Zhanyong Wan)
|
|
|
|
|
|
|
|
// Google Mock - a framework for writing C++ mock classes.
|
|
|
|
//
|
|
|
|
// This file defines some utilities useful for implementing Google
|
|
|
|
// Mock. They are subject to change without notice, so please DO NOT
|
|
|
|
// USE THEM IN USER CODE.
|
|
|
|
|
|
|
|
#ifndef GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
|
|
|
|
#define GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <ostream> // NOLINT
|
|
|
|
#include <string>
|
|
|
|
|
|
|
|
#include <gmock/internal/gmock-generated-internal-utils.h>
|
|
|
|
#include <gmock/internal/gmock-port.h>
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
|
|
|
|
// Concatenates two pre-processor symbols; works for concatenating
|
|
|
|
// built-in macros like __FILE__ and __LINE__.
|
2009-02-19 00:33:37 +00:00
|
|
|
#define GMOCK_CONCAT_TOKEN_IMPL_(foo, bar) foo##bar
|
|
|
|
#define GMOCK_CONCAT_TOKEN_(foo, bar) GMOCK_CONCAT_TOKEN_IMPL_(foo, bar)
|
2008-12-10 05:08:54 +00:00
|
|
|
|
|
|
|
#ifdef __GNUC__
|
2009-02-19 00:33:37 +00:00
|
|
|
#define GMOCK_ATTRIBUTE_UNUSED_ __attribute__ ((unused))
|
2008-12-10 05:08:54 +00:00
|
|
|
#else
|
2009-02-19 00:33:37 +00:00
|
|
|
#define GMOCK_ATTRIBUTE_UNUSED_
|
2008-12-10 05:08:54 +00:00
|
|
|
#endif // __GNUC__
|
|
|
|
|
|
|
|
class ProtocolMessage;
|
|
|
|
namespace proto2 { class Message; }
|
|
|
|
|
|
|
|
namespace testing {
|
|
|
|
namespace internal {
|
|
|
|
|
2009-02-12 01:34:27 +00:00
|
|
|
// Converts an identifier name to a space-separated list of lower-case
|
|
|
|
// words. Each maximum substring of the form [A-Za-z][a-z]*|\d+ is
|
|
|
|
// treated as one word. For example, both "FooBar123" and
|
|
|
|
// "foo_bar_123" are converted to "foo bar 123".
|
|
|
|
string ConvertIdentifierNameToWords(const char* id_name);
|
|
|
|
|
2008-12-10 05:08:54 +00:00
|
|
|
// Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
|
|
|
|
// compiler error iff T1 and T2 are different types.
|
|
|
|
template <typename T1, typename T2>
|
|
|
|
struct CompileAssertTypesEqual;
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
struct CompileAssertTypesEqual<T, T> {
|
|
|
|
};
|
|
|
|
|
|
|
|
// Removes the reference from a type if it is a reference type,
|
|
|
|
// otherwise leaves it unchanged. This is the same as
|
|
|
|
// tr1::remove_reference, which is not widely available yet.
|
|
|
|
template <typename T>
|
|
|
|
struct RemoveReference { typedef T type; }; // NOLINT
|
|
|
|
template <typename T>
|
|
|
|
struct RemoveReference<T&> { typedef T type; }; // NOLINT
|
|
|
|
|
|
|
|
// A handy wrapper around RemoveReference that works when the argument
|
|
|
|
// T depends on template parameters.
|
2009-02-19 00:33:37 +00:00
|
|
|
#define GMOCK_REMOVE_REFERENCE_(T) \
|
2008-12-10 05:08:54 +00:00
|
|
|
typename ::testing::internal::RemoveReference<T>::type
|
|
|
|
|
|
|
|
// Removes const from a type if it is a const type, otherwise leaves
|
|
|
|
// it unchanged. This is the same as tr1::remove_const, which is not
|
|
|
|
// widely available yet.
|
|
|
|
template <typename T>
|
|
|
|
struct RemoveConst { typedef T type; }; // NOLINT
|
|
|
|
template <typename T>
|
|
|
|
struct RemoveConst<const T> { typedef T type; }; // NOLINT
|
|
|
|
|
2009-06-04 05:48:20 +00:00
|
|
|
// MSVC 8.0 has a bug which causes the above definition to fail to
|
|
|
|
// remove the const in 'const int[3]'. The following specialization
|
|
|
|
// works around the bug. However, it causes trouble with gcc and thus
|
|
|
|
// needs to be conditionally compiled.
|
|
|
|
#ifdef _MSC_VER
|
|
|
|
template <typename T, size_t N>
|
|
|
|
struct RemoveConst<T[N]> {
|
|
|
|
typedef typename RemoveConst<T>::type type[N];
|
|
|
|
};
|
|
|
|
#endif // _MSC_VER
|
|
|
|
|
2008-12-10 05:08:54 +00:00
|
|
|
// A handy wrapper around RemoveConst that works when the argument
|
|
|
|
// T depends on template parameters.
|
2009-02-19 00:33:37 +00:00
|
|
|
#define GMOCK_REMOVE_CONST_(T) \
|
2008-12-10 05:08:54 +00:00
|
|
|
typename ::testing::internal::RemoveConst<T>::type
|
|
|
|
|
|
|
|
// Adds reference to a type if it is not a reference type,
|
|
|
|
// otherwise leaves it unchanged. This is the same as
|
|
|
|
// tr1::add_reference, which is not widely available yet.
|
|
|
|
template <typename T>
|
|
|
|
struct AddReference { typedef T& type; }; // NOLINT
|
|
|
|
template <typename T>
|
|
|
|
struct AddReference<T&> { typedef T& type; }; // NOLINT
|
|
|
|
|
|
|
|
// A handy wrapper around AddReference that works when the argument T
|
|
|
|
// depends on template parameters.
|
2009-02-19 00:33:37 +00:00
|
|
|
#define GMOCK_ADD_REFERENCE_(T) \
|
2008-12-10 05:08:54 +00:00
|
|
|
typename ::testing::internal::AddReference<T>::type
|
|
|
|
|
|
|
|
// Adds a reference to const on top of T as necessary. For example,
|
|
|
|
// it transforms
|
|
|
|
//
|
|
|
|
// char ==> const char&
|
|
|
|
// const char ==> const char&
|
|
|
|
// char& ==> const char&
|
|
|
|
// const char& ==> const char&
|
|
|
|
//
|
|
|
|
// The argument T must depend on some template parameters.
|
2009-02-19 00:33:37 +00:00
|
|
|
#define GMOCK_REFERENCE_TO_CONST_(T) \
|
|
|
|
GMOCK_ADD_REFERENCE_(const GMOCK_REMOVE_REFERENCE_(T))
|
2008-12-10 05:08:54 +00:00
|
|
|
|
|
|
|
// PointeeOf<Pointer>::type is the type of a value pointed to by a
|
|
|
|
// Pointer, which can be either a smart pointer or a raw pointer. The
|
|
|
|
// following default implementation is for the case where Pointer is a
|
|
|
|
// smart pointer.
|
|
|
|
template <typename Pointer>
|
|
|
|
struct PointeeOf {
|
|
|
|
// Smart pointer classes define type element_type as the type of
|
|
|
|
// their pointees.
|
|
|
|
typedef typename Pointer::element_type type;
|
|
|
|
};
|
|
|
|
// This specialization is for the raw pointer case.
|
|
|
|
template <typename T>
|
|
|
|
struct PointeeOf<T*> { typedef T type; }; // NOLINT
|
|
|
|
|
|
|
|
// GetRawPointer(p) returns the raw pointer underlying p when p is a
|
|
|
|
// smart pointer, or returns p itself when p is already a raw pointer.
|
|
|
|
// The following default implementation is for the smart pointer case.
|
|
|
|
template <typename Pointer>
|
|
|
|
inline typename Pointer::element_type* GetRawPointer(const Pointer& p) {
|
|
|
|
return p.get();
|
|
|
|
}
|
|
|
|
// This overloaded version is for the raw pointer case.
|
|
|
|
template <typename Element>
|
|
|
|
inline Element* GetRawPointer(Element* p) { return p; }
|
|
|
|
|
|
|
|
// This comparator allows linked_ptr to be stored in sets.
|
|
|
|
template <typename T>
|
|
|
|
struct LinkedPtrLessThan {
|
2009-05-14 20:55:30 +00:00
|
|
|
bool operator()(const ::testing::internal::linked_ptr<T>& lhs,
|
2008-12-10 05:08:54 +00:00
|
|
|
const ::testing::internal::linked_ptr<T>& rhs) const {
|
|
|
|
return lhs.get() < rhs.get();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// ImplicitlyConvertible<From, To>::value is a compile-time bool
|
|
|
|
// constant that's true iff type From can be implicitly converted to
|
|
|
|
// type To.
|
|
|
|
template <typename From, typename To>
|
|
|
|
class ImplicitlyConvertible {
|
|
|
|
private:
|
|
|
|
// We need the following helper functions only for their types.
|
|
|
|
// They have no implementations.
|
|
|
|
|
|
|
|
// MakeFrom() is an expression whose type is From. We cannot simply
|
|
|
|
// use From(), as the type From may not have a public default
|
|
|
|
// constructor.
|
|
|
|
static From MakeFrom();
|
|
|
|
|
|
|
|
// These two functions are overloaded. Given an expression
|
|
|
|
// Helper(x), the compiler will pick the first version if x can be
|
|
|
|
// implicitly converted to type To; otherwise it will pick the
|
|
|
|
// second version.
|
|
|
|
//
|
|
|
|
// The first version returns a value of size 1, and the second
|
|
|
|
// version returns a value of size 2. Therefore, by checking the
|
|
|
|
// size of Helper(x), which can be done at compile time, we can tell
|
|
|
|
// which version of Helper() is used, and hence whether x can be
|
|
|
|
// implicitly converted to type To.
|
|
|
|
static char Helper(To);
|
|
|
|
static char (&Helper(...))[2]; // NOLINT
|
|
|
|
|
|
|
|
// We have to put the 'public' section after the 'private' section,
|
|
|
|
// or MSVC refuses to compile the code.
|
|
|
|
public:
|
|
|
|
// MSVC warns about implicitly converting from double to int for
|
|
|
|
// possible loss of data, so we need to temporarily disable the
|
|
|
|
// warning.
|
|
|
|
#ifdef _MSC_VER
|
|
|
|
#pragma warning(push) // Saves the current warning state.
|
|
|
|
#pragma warning(disable:4244) // Temporarily disables warning 4244.
|
|
|
|
static const bool value =
|
|
|
|
sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
|
|
|
|
#pragma warning(pop) // Restores the warning state.
|
|
|
|
#else
|
|
|
|
static const bool value =
|
|
|
|
sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
|
|
|
|
#endif // _MSV_VER
|
|
|
|
};
|
|
|
|
template <typename From, typename To>
|
|
|
|
const bool ImplicitlyConvertible<From, To>::value;
|
|
|
|
|
2009-09-25 18:55:50 +00:00
|
|
|
// Symbian compilation can be done with wchar_t being either a native
|
|
|
|
// type or a typedef. Using Google Mock with OpenC without wchar_t
|
|
|
|
// should require the definition of _STLP_NO_WCHAR_T.
|
|
|
|
//
|
|
|
|
// MSVC treats wchar_t as a native type usually, but treats it as the
|
|
|
|
// same as unsigned short when the compiler option /Zc:wchar_t- is
|
|
|
|
// specified. It defines _NATIVE_WCHAR_T_DEFINED symbol when wchar_t
|
|
|
|
// is a native type.
|
|
|
|
#if (GTEST_OS_SYMBIAN && defined(_STLP_NO_WCHAR_T)) || \
|
|
|
|
(defined(_MSC_VER) && !defined(_NATIVE_WCHAR_T_DEFINED))
|
|
|
|
// wchar_t is a typedef.
|
|
|
|
#else
|
|
|
|
#define GMOCK_WCHAR_T_IS_NATIVE_ 1
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// signed wchar_t and unsigned wchar_t are NOT in the C++ standard.
|
|
|
|
// Using them is a bad practice and not portable. So DON'T use them.
|
|
|
|
//
|
|
|
|
// Still, Google Mock is designed to work even if the user uses signed
|
|
|
|
// wchar_t or unsigned wchar_t (obviously, assuming the compiler
|
|
|
|
// supports them).
|
|
|
|
//
|
|
|
|
// To gcc,
|
|
|
|
// wchar_t == signed wchar_t != unsigned wchar_t == unsigned int
|
|
|
|
#ifdef __GNUC__
|
|
|
|
#define GMOCK_HAS_SIGNED_WCHAR_T_ 1 // signed/unsigned wchar_t are valid types.
|
|
|
|
#endif
|
|
|
|
|
2009-05-14 20:55:30 +00:00
|
|
|
// In what follows, we use the term "kind" to indicate whether a type
|
|
|
|
// is bool, an integer type (excluding bool), a floating-point type,
|
|
|
|
// or none of them. This categorization is useful for determining
|
|
|
|
// when a matcher argument type can be safely converted to another
|
|
|
|
// type in the implementation of SafeMatcherCast.
|
|
|
|
enum TypeKind {
|
|
|
|
kBool, kInteger, kFloatingPoint, kOther
|
|
|
|
};
|
|
|
|
|
|
|
|
// KindOf<T>::value is the kind of type T.
|
|
|
|
template <typename T> struct KindOf {
|
|
|
|
enum { value = kOther }; // The default kind.
|
|
|
|
};
|
|
|
|
|
|
|
|
// This macro declares that the kind of 'type' is 'kind'.
|
|
|
|
#define GMOCK_DECLARE_KIND_(type, kind) \
|
|
|
|
template <> struct KindOf<type> { enum { value = kind }; }
|
|
|
|
|
|
|
|
GMOCK_DECLARE_KIND_(bool, kBool);
|
|
|
|
|
|
|
|
// All standard integer types.
|
|
|
|
GMOCK_DECLARE_KIND_(char, kInteger);
|
|
|
|
GMOCK_DECLARE_KIND_(signed char, kInteger);
|
|
|
|
GMOCK_DECLARE_KIND_(unsigned char, kInteger);
|
|
|
|
GMOCK_DECLARE_KIND_(short, kInteger); // NOLINT
|
|
|
|
GMOCK_DECLARE_KIND_(unsigned short, kInteger); // NOLINT
|
|
|
|
GMOCK_DECLARE_KIND_(int, kInteger);
|
|
|
|
GMOCK_DECLARE_KIND_(unsigned int, kInteger);
|
|
|
|
GMOCK_DECLARE_KIND_(long, kInteger); // NOLINT
|
|
|
|
GMOCK_DECLARE_KIND_(unsigned long, kInteger); // NOLINT
|
|
|
|
|
2009-09-25 18:55:50 +00:00
|
|
|
#if GMOCK_WCHAR_T_IS_NATIVE_
|
2009-05-14 20:55:30 +00:00
|
|
|
GMOCK_DECLARE_KIND_(wchar_t, kInteger);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Non-standard integer types.
|
|
|
|
GMOCK_DECLARE_KIND_(Int64, kInteger);
|
|
|
|
GMOCK_DECLARE_KIND_(UInt64, kInteger);
|
|
|
|
|
|
|
|
// All standard floating-point types.
|
|
|
|
GMOCK_DECLARE_KIND_(float, kFloatingPoint);
|
|
|
|
GMOCK_DECLARE_KIND_(double, kFloatingPoint);
|
|
|
|
GMOCK_DECLARE_KIND_(long double, kFloatingPoint);
|
|
|
|
|
|
|
|
#undef GMOCK_DECLARE_KIND_
|
|
|
|
|
|
|
|
// Evaluates to the kind of 'type'.
|
|
|
|
#define GMOCK_KIND_OF_(type) \
|
|
|
|
static_cast< ::testing::internal::TypeKind>( \
|
|
|
|
::testing::internal::KindOf<type>::value)
|
|
|
|
|
|
|
|
// Evaluates to true iff integer type T is signed.
|
|
|
|
#define GMOCK_IS_SIGNED_(T) (static_cast<T>(-1) < 0)
|
|
|
|
|
|
|
|
// LosslessArithmeticConvertibleImpl<kFromKind, From, kToKind, To>::value
|
|
|
|
// is true iff arithmetic type From can be losslessly converted to
|
|
|
|
// arithmetic type To.
|
|
|
|
//
|
|
|
|
// It's the user's responsibility to ensure that both From and To are
|
|
|
|
// raw (i.e. has no CV modifier, is not a pointer, and is not a
|
|
|
|
// reference) built-in arithmetic types, kFromKind is the kind of
|
|
|
|
// From, and kToKind is the kind of To; the value is
|
|
|
|
// implementation-defined when the above pre-condition is violated.
|
|
|
|
template <TypeKind kFromKind, typename From, TypeKind kToKind, typename To>
|
|
|
|
struct LosslessArithmeticConvertibleImpl : public false_type {};
|
|
|
|
|
|
|
|
// Converting bool to bool is lossless.
|
|
|
|
template <>
|
|
|
|
struct LosslessArithmeticConvertibleImpl<kBool, bool, kBool, bool>
|
|
|
|
: public true_type {}; // NOLINT
|
|
|
|
|
|
|
|
// Converting bool to any integer type is lossless.
|
|
|
|
template <typename To>
|
|
|
|
struct LosslessArithmeticConvertibleImpl<kBool, bool, kInteger, To>
|
|
|
|
: public true_type {}; // NOLINT
|
|
|
|
|
|
|
|
// Converting bool to any floating-point type is lossless.
|
|
|
|
template <typename To>
|
|
|
|
struct LosslessArithmeticConvertibleImpl<kBool, bool, kFloatingPoint, To>
|
|
|
|
: public true_type {}; // NOLINT
|
|
|
|
|
|
|
|
// Converting an integer to bool is lossy.
|
|
|
|
template <typename From>
|
|
|
|
struct LosslessArithmeticConvertibleImpl<kInteger, From, kBool, bool>
|
|
|
|
: public false_type {}; // NOLINT
|
|
|
|
|
|
|
|
// Converting an integer to another non-bool integer is lossless iff
|
|
|
|
// the target type's range encloses the source type's range.
|
|
|
|
template <typename From, typename To>
|
|
|
|
struct LosslessArithmeticConvertibleImpl<kInteger, From, kInteger, To>
|
|
|
|
: public bool_constant<
|
|
|
|
// When converting from a smaller size to a larger size, we are
|
|
|
|
// fine as long as we are not converting from signed to unsigned.
|
|
|
|
((sizeof(From) < sizeof(To)) &&
|
|
|
|
(!GMOCK_IS_SIGNED_(From) || GMOCK_IS_SIGNED_(To))) ||
|
|
|
|
// When converting between the same size, the signedness must match.
|
|
|
|
((sizeof(From) == sizeof(To)) &&
|
|
|
|
(GMOCK_IS_SIGNED_(From) == GMOCK_IS_SIGNED_(To)))> {}; // NOLINT
|
|
|
|
|
|
|
|
#undef GMOCK_IS_SIGNED_
|
|
|
|
|
|
|
|
// Converting an integer to a floating-point type may be lossy, since
|
|
|
|
// the format of a floating-point number is implementation-defined.
|
|
|
|
template <typename From, typename To>
|
|
|
|
struct LosslessArithmeticConvertibleImpl<kInteger, From, kFloatingPoint, To>
|
|
|
|
: public false_type {}; // NOLINT
|
|
|
|
|
|
|
|
// Converting a floating-point to bool is lossy.
|
|
|
|
template <typename From>
|
|
|
|
struct LosslessArithmeticConvertibleImpl<kFloatingPoint, From, kBool, bool>
|
|
|
|
: public false_type {}; // NOLINT
|
|
|
|
|
|
|
|
// Converting a floating-point to an integer is lossy.
|
|
|
|
template <typename From, typename To>
|
|
|
|
struct LosslessArithmeticConvertibleImpl<kFloatingPoint, From, kInteger, To>
|
|
|
|
: public false_type {}; // NOLINT
|
|
|
|
|
|
|
|
// Converting a floating-point to another floating-point is lossless
|
|
|
|
// iff the target type is at least as big as the source type.
|
|
|
|
template <typename From, typename To>
|
|
|
|
struct LosslessArithmeticConvertibleImpl<
|
|
|
|
kFloatingPoint, From, kFloatingPoint, To>
|
|
|
|
: public bool_constant<sizeof(From) <= sizeof(To)> {}; // NOLINT
|
|
|
|
|
|
|
|
// LosslessArithmeticConvertible<From, To>::value is true iff arithmetic
|
|
|
|
// type From can be losslessly converted to arithmetic type To.
|
|
|
|
//
|
|
|
|
// It's the user's responsibility to ensure that both From and To are
|
|
|
|
// raw (i.e. has no CV modifier, is not a pointer, and is not a
|
|
|
|
// reference) built-in arithmetic types; the value is
|
|
|
|
// implementation-defined when the above pre-condition is violated.
|
|
|
|
template <typename From, typename To>
|
|
|
|
struct LosslessArithmeticConvertible
|
|
|
|
: public LosslessArithmeticConvertibleImpl<
|
|
|
|
GMOCK_KIND_OF_(From), From, GMOCK_KIND_OF_(To), To> {}; // NOLINT
|
|
|
|
|
2008-12-10 05:08:54 +00:00
|
|
|
// IsAProtocolMessage<T>::value is a compile-time bool constant that's
|
|
|
|
// true iff T is type ProtocolMessage, proto2::Message, or a subclass
|
|
|
|
// of those.
|
|
|
|
template <typename T>
|
2009-05-14 20:55:30 +00:00
|
|
|
struct IsAProtocolMessage
|
|
|
|
: public bool_constant<
|
|
|
|
ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
|
|
|
|
ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
|
2008-12-10 05:08:54 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
// When the compiler sees expression IsContainerTest<C>(0), the first
|
|
|
|
// overload of IsContainerTest will be picked if C is an STL-style
|
|
|
|
// container class (since C::const_iterator* is a valid type and 0 can
|
|
|
|
// be converted to it), while the second overload will be picked
|
|
|
|
// otherwise (since C::const_iterator will be an invalid type in this
|
|
|
|
// case). Therefore, we can determine whether C is a container class
|
|
|
|
// by checking the type of IsContainerTest<C>(0). The value of the
|
|
|
|
// expression is insignificant.
|
|
|
|
typedef int IsContainer;
|
|
|
|
template <class C>
|
|
|
|
IsContainer IsContainerTest(typename C::const_iterator*) { return 0; }
|
|
|
|
|
|
|
|
typedef char IsNotContainer;
|
|
|
|
template <class C>
|
|
|
|
IsNotContainer IsContainerTest(...) { return '\0'; }
|
|
|
|
|
|
|
|
// This interface knows how to report a Google Mock failure (either
|
|
|
|
// non-fatal or fatal).
|
|
|
|
class FailureReporterInterface {
|
|
|
|
public:
|
|
|
|
// The type of a failure (either non-fatal or fatal).
|
|
|
|
enum FailureType {
|
|
|
|
NONFATAL, FATAL
|
|
|
|
};
|
|
|
|
|
|
|
|
virtual ~FailureReporterInterface() {}
|
|
|
|
|
|
|
|
// Reports a failure that occurred at the given source file location.
|
|
|
|
virtual void ReportFailure(FailureType type, const char* file, int line,
|
|
|
|
const string& message) = 0;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Returns the failure reporter used by Google Mock.
|
|
|
|
FailureReporterInterface* GetFailureReporter();
|
|
|
|
|
|
|
|
// Asserts that condition is true; aborts the process with the given
|
|
|
|
// message if condition is false. We cannot use LOG(FATAL) or CHECK()
|
|
|
|
// as Google Mock might be used to mock the log sink itself. We
|
|
|
|
// inline this function to prevent it from showing up in the stack
|
|
|
|
// trace.
|
|
|
|
inline void Assert(bool condition, const char* file, int line,
|
|
|
|
const string& msg) {
|
|
|
|
if (!condition) {
|
|
|
|
GetFailureReporter()->ReportFailure(FailureReporterInterface::FATAL,
|
|
|
|
file, line, msg);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
inline void Assert(bool condition, const char* file, int line) {
|
|
|
|
Assert(condition, file, line, "Assertion failed.");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Verifies that condition is true; generates a non-fatal failure if
|
|
|
|
// condition is false.
|
|
|
|
inline void Expect(bool condition, const char* file, int line,
|
|
|
|
const string& msg) {
|
|
|
|
if (!condition) {
|
|
|
|
GetFailureReporter()->ReportFailure(FailureReporterInterface::NONFATAL,
|
|
|
|
file, line, msg);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
inline void Expect(bool condition, const char* file, int line) {
|
|
|
|
Expect(condition, file, line, "Expectation failed.");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Severity level of a log.
|
|
|
|
enum LogSeverity {
|
|
|
|
INFO = 0,
|
|
|
|
WARNING = 1,
|
|
|
|
};
|
|
|
|
|
|
|
|
// Valid values for the --gmock_verbose flag.
|
|
|
|
|
|
|
|
// All logs (informational and warnings) are printed.
|
|
|
|
const char kInfoVerbosity[] = "info";
|
|
|
|
// Only warnings are printed.
|
|
|
|
const char kWarningVerbosity[] = "warning";
|
|
|
|
// No logs are printed.
|
|
|
|
const char kErrorVerbosity[] = "error";
|
|
|
|
|
2009-05-29 19:50:06 +00:00
|
|
|
// Returns true iff a log with the given severity is visible according
|
|
|
|
// to the --gmock_verbose flag.
|
|
|
|
bool LogIsVisible(LogSeverity severity);
|
|
|
|
|
2008-12-10 05:08:54 +00:00
|
|
|
// Prints the given message to stdout iff 'severity' >= the level
|
|
|
|
// specified by the --gmock_verbose flag. If stack_frames_to_skip >=
|
|
|
|
// 0, also prints the stack trace excluding the top
|
|
|
|
// stack_frames_to_skip frames. In opt mode, any positive
|
|
|
|
// stack_frames_to_skip is treated as 0, since we don't know which
|
|
|
|
// function calls will be inlined by the compiler and need to be
|
|
|
|
// conservative.
|
|
|
|
void Log(LogSeverity severity, const string& message, int stack_frames_to_skip);
|
|
|
|
|
2009-05-14 20:55:30 +00:00
|
|
|
// TODO(wan@google.com): group all type utilities together.
|
|
|
|
|
2008-12-10 05:08:54 +00:00
|
|
|
// Type traits.
|
|
|
|
|
|
|
|
// is_reference<T>::value is non-zero iff T is a reference type.
|
|
|
|
template <typename T> struct is_reference : public false_type {};
|
|
|
|
template <typename T> struct is_reference<T&> : public true_type {};
|
|
|
|
|
|
|
|
// type_equals<T1, T2>::value is non-zero iff T1 and T2 are the same type.
|
|
|
|
template <typename T1, typename T2> struct type_equals : public false_type {};
|
|
|
|
template <typename T> struct type_equals<T, T> : public true_type {};
|
|
|
|
|
|
|
|
// remove_reference<T>::type removes the reference from type T, if any.
|
2009-05-14 20:55:30 +00:00
|
|
|
template <typename T> struct remove_reference { typedef T type; }; // NOLINT
|
|
|
|
template <typename T> struct remove_reference<T&> { typedef T type; }; // NOLINT
|
2008-12-10 05:08:54 +00:00
|
|
|
|
|
|
|
// Invalid<T>() returns an invalid value of type T. This is useful
|
|
|
|
// when a value of type T is needed for compilation, but the statement
|
|
|
|
// will not really be executed (or we don't care if the statement
|
|
|
|
// crashes).
|
|
|
|
template <typename T>
|
|
|
|
inline T Invalid() {
|
|
|
|
return *static_cast<typename remove_reference<T>::type*>(NULL);
|
|
|
|
}
|
|
|
|
template <>
|
|
|
|
inline void Invalid<void>() {}
|
|
|
|
|
2009-06-04 05:48:20 +00:00
|
|
|
// Utilities for native arrays.
|
|
|
|
|
|
|
|
// ArrayEq() compares two k-dimensional native arrays using the
|
|
|
|
// elements' operator==, where k can be any integer >= 0. When k is
|
|
|
|
// 0, ArrayEq() degenerates into comparing a single pair of values.
|
|
|
|
|
|
|
|
template <typename T, typename U>
|
|
|
|
bool ArrayEq(const T* lhs, size_t size, const U* rhs);
|
|
|
|
|
|
|
|
// This generic version is used when k is 0.
|
|
|
|
template <typename T, typename U>
|
|
|
|
inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
|
|
|
|
|
|
|
|
// This overload is used when k >= 1.
|
|
|
|
template <typename T, typename U, size_t N>
|
|
|
|
inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
|
|
|
|
return internal::ArrayEq(lhs, N, rhs);
|
|
|
|
}
|
|
|
|
|
|
|
|
// This helper reduces code bloat. If we instead put its logic inside
|
|
|
|
// the previous ArrayEq() function, arrays with different sizes would
|
|
|
|
// lead to different copies of the template code.
|
|
|
|
template <typename T, typename U>
|
|
|
|
bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
|
|
|
|
for (size_t i = 0; i != size; i++) {
|
|
|
|
if (!internal::ArrayEq(lhs[i], rhs[i]))
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Finds the first element in the iterator range [begin, end) that
|
|
|
|
// equals elem. Element may be a native array type itself.
|
|
|
|
template <typename Iter, typename Element>
|
|
|
|
Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
|
|
|
|
for (Iter it = begin; it != end; ++it) {
|
|
|
|
if (internal::ArrayEq(*it, elem))
|
|
|
|
return it;
|
|
|
|
}
|
|
|
|
return end;
|
|
|
|
}
|
|
|
|
|
|
|
|
// CopyArray() copies a k-dimensional native array using the elements'
|
|
|
|
// operator=, where k can be any integer >= 0. When k is 0,
|
|
|
|
// CopyArray() degenerates into copying a single value.
|
|
|
|
|
|
|
|
template <typename T, typename U>
|
|
|
|
void CopyArray(const T* from, size_t size, U* to);
|
|
|
|
|
|
|
|
// This generic version is used when k is 0.
|
|
|
|
template <typename T, typename U>
|
|
|
|
inline void CopyArray(const T& from, U* to) { *to = from; }
|
|
|
|
|
|
|
|
// This overload is used when k >= 1.
|
|
|
|
template <typename T, typename U, size_t N>
|
|
|
|
inline void CopyArray(const T(&from)[N], U(*to)[N]) {
|
|
|
|
internal::CopyArray(from, N, *to);
|
|
|
|
}
|
|
|
|
|
|
|
|
// This helper reduces code bloat. If we instead put its logic inside
|
|
|
|
// the previous CopyArray() function, arrays with different sizes
|
|
|
|
// would lead to different copies of the template code.
|
|
|
|
template <typename T, typename U>
|
|
|
|
void CopyArray(const T* from, size_t size, U* to) {
|
|
|
|
for (size_t i = 0; i != size; i++) {
|
|
|
|
internal::CopyArray(from[i], to + i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// The relation between an NativeArray object (see below) and the
|
|
|
|
// native array it represents.
|
|
|
|
enum RelationToSource {
|
|
|
|
kReference, // The NativeArray references the native array.
|
|
|
|
kCopy // The NativeArray makes a copy of the native array and
|
|
|
|
// owns the copy.
|
|
|
|
};
|
|
|
|
|
|
|
|
// Adapts a native array to a read-only STL-style container. Instead
|
|
|
|
// of the complete STL container concept, this adaptor only implements
|
|
|
|
// members useful for Google Mock's container matchers. New members
|
|
|
|
// should be added as needed. To simplify the implementation, we only
|
|
|
|
// support Element being a raw type (i.e. having no top-level const or
|
|
|
|
// reference modifier). It's the client's responsibility to satisfy
|
|
|
|
// this requirement. Element can be an array type itself (hence
|
|
|
|
// multi-dimensional arrays are supported).
|
|
|
|
template <typename Element>
|
|
|
|
class NativeArray {
|
|
|
|
public:
|
|
|
|
// STL-style container typedefs.
|
|
|
|
typedef Element value_type;
|
|
|
|
typedef const Element* const_iterator;
|
|
|
|
|
2009-09-16 17:38:08 +00:00
|
|
|
// Constructs from a native array.
|
|
|
|
NativeArray(const Element* array, size_t count, RelationToSource relation) {
|
|
|
|
Init(array, count, relation);
|
2009-06-04 05:48:20 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// Copy constructor.
|
|
|
|
NativeArray(const NativeArray& rhs) {
|
|
|
|
Init(rhs.array_, rhs.size_, rhs.relation_to_source_);
|
|
|
|
}
|
|
|
|
|
|
|
|
~NativeArray() {
|
|
|
|
// Ensures that the user doesn't instantiate NativeArray with a
|
|
|
|
// const or reference type.
|
|
|
|
testing::StaticAssertTypeEq<Element,
|
|
|
|
GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Element))>();
|
|
|
|
if (relation_to_source_ == kCopy)
|
|
|
|
delete[] array_;
|
|
|
|
}
|
|
|
|
|
|
|
|
// STL-style container methods.
|
|
|
|
size_t size() const { return size_; }
|
|
|
|
const_iterator begin() const { return array_; }
|
|
|
|
const_iterator end() const { return array_ + size_; }
|
|
|
|
bool operator==(const NativeArray& rhs) const {
|
|
|
|
return size() == rhs.size() &&
|
|
|
|
ArrayEq(begin(), size(), rhs.begin());
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
// Not implemented as we don't want to support assignment.
|
|
|
|
void operator=(const NativeArray& rhs);
|
|
|
|
|
|
|
|
// Initializes this object; makes a copy of the input array if
|
|
|
|
// 'relation' is kCopy.
|
|
|
|
void Init(const Element* array, size_t size, RelationToSource relation) {
|
|
|
|
if (relation == kReference) {
|
|
|
|
array_ = array;
|
|
|
|
} else {
|
|
|
|
Element* const copy = new Element[size];
|
|
|
|
CopyArray(array, size, copy);
|
|
|
|
array_ = copy;
|
|
|
|
}
|
|
|
|
size_ = size;
|
|
|
|
relation_to_source_ = relation;
|
|
|
|
}
|
|
|
|
|
|
|
|
const Element* array_;
|
|
|
|
size_t size_;
|
|
|
|
RelationToSource relation_to_source_;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Given a raw type (i.e. having no top-level reference or const
|
|
|
|
// modifier) RawContainer that's either an STL-style container or a
|
|
|
|
// native array, class StlContainerView<RawContainer> has the
|
|
|
|
// following members:
|
|
|
|
//
|
|
|
|
// - type is a type that provides an STL-style container view to
|
|
|
|
// (i.e. implements the STL container concept for) RawContainer;
|
|
|
|
// - const_reference is a type that provides a reference to a const
|
|
|
|
// RawContainer;
|
|
|
|
// - ConstReference(raw_container) returns a const reference to an STL-style
|
|
|
|
// container view to raw_container, which is a RawContainer.
|
|
|
|
// - Copy(raw_container) returns an STL-style container view of a
|
|
|
|
// copy of raw_container, which is a RawContainer.
|
|
|
|
//
|
|
|
|
// This generic version is used when RawContainer itself is already an
|
|
|
|
// STL-style container.
|
|
|
|
template <class RawContainer>
|
|
|
|
class StlContainerView {
|
|
|
|
public:
|
|
|
|
typedef RawContainer type;
|
|
|
|
typedef const type& const_reference;
|
|
|
|
|
|
|
|
static const_reference ConstReference(const RawContainer& container) {
|
|
|
|
// Ensures that RawContainer is not a const type.
|
|
|
|
testing::StaticAssertTypeEq<RawContainer,
|
|
|
|
GMOCK_REMOVE_CONST_(RawContainer)>();
|
|
|
|
return container;
|
|
|
|
}
|
|
|
|
static type Copy(const RawContainer& container) { return container; }
|
|
|
|
};
|
|
|
|
|
|
|
|
// This specialization is used when RawContainer is a native array type.
|
|
|
|
template <typename Element, size_t N>
|
|
|
|
class StlContainerView<Element[N]> {
|
|
|
|
public:
|
|
|
|
typedef GMOCK_REMOVE_CONST_(Element) RawElement;
|
|
|
|
typedef internal::NativeArray<RawElement> type;
|
|
|
|
// NativeArray<T> can represent a native array either by value or by
|
|
|
|
// reference (selected by a constructor argument), so 'const type'
|
|
|
|
// can be used to reference a const native array. We cannot
|
|
|
|
// 'typedef const type& const_reference' here, as that would mean
|
|
|
|
// ConstReference() has to return a reference to a local variable.
|
|
|
|
typedef const type const_reference;
|
|
|
|
|
|
|
|
static const_reference ConstReference(const Element (&array)[N]) {
|
|
|
|
// Ensures that Element is not a const type.
|
|
|
|
testing::StaticAssertTypeEq<Element, RawElement>();
|
2009-09-25 18:55:50 +00:00
|
|
|
#if GTEST_OS_SYMBIAN
|
|
|
|
// The Nokia Symbian compiler confuses itself in template instantiation
|
|
|
|
// for this call without the cast to Element*:
|
|
|
|
// function call '[testing::internal::NativeArray<char *>].NativeArray(
|
|
|
|
// {lval} const char *[4], long, testing::internal::RelationToSource)'
|
|
|
|
// does not match
|
|
|
|
// 'testing::internal::NativeArray<char *>::NativeArray(
|
|
|
|
// char *const *, unsigned int, testing::internal::RelationToSource)'
|
|
|
|
// (instantiating: 'testing::internal::ContainsMatcherImpl
|
|
|
|
// <const char * (&)[4]>::Matches(const char * (&)[4]) const')
|
|
|
|
// (instantiating: 'testing::internal::StlContainerView<char *[4]>::
|
|
|
|
// ConstReference(const char * (&)[4])')
|
|
|
|
// (and though the N parameter type is mismatched in the above explicit
|
|
|
|
// conversion of it doesn't help - only the conversion of the array).
|
|
|
|
return type(const_cast<Element*>(&array[0]), N, kReference);
|
|
|
|
#else
|
2009-09-16 17:38:08 +00:00
|
|
|
return type(array, N, kReference);
|
2009-09-25 18:55:50 +00:00
|
|
|
#endif // GTEST_OS_SYMBIAN
|
2009-06-04 05:48:20 +00:00
|
|
|
}
|
|
|
|
static type Copy(const Element (&array)[N]) {
|
2009-09-25 18:55:50 +00:00
|
|
|
#if GTEST_OS_SYMBIAN
|
|
|
|
return type(const_cast<Element*>(&array[0]), N, kCopy);
|
|
|
|
#else
|
2009-09-16 17:38:08 +00:00
|
|
|
return type(array, N, kCopy);
|
2009-09-25 18:55:50 +00:00
|
|
|
#endif // GTEST_OS_SYMBIAN
|
2009-06-04 05:48:20 +00:00
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// This specialization is used when RawContainer is a native array
|
|
|
|
// represented as a (pointer, size) tuple.
|
|
|
|
template <typename ElementPointer, typename Size>
|
|
|
|
class StlContainerView< ::std::tr1::tuple<ElementPointer, Size> > {
|
|
|
|
public:
|
|
|
|
typedef GMOCK_REMOVE_CONST_(
|
|
|
|
typename internal::PointeeOf<ElementPointer>::type) RawElement;
|
|
|
|
typedef internal::NativeArray<RawElement> type;
|
|
|
|
typedef const type const_reference;
|
|
|
|
|
|
|
|
static const_reference ConstReference(
|
|
|
|
const ::std::tr1::tuple<ElementPointer, Size>& array) {
|
2009-09-16 17:38:08 +00:00
|
|
|
using ::std::tr1::get;
|
|
|
|
return type(get<0>(array), get<1>(array), kReference);
|
2009-06-04 05:48:20 +00:00
|
|
|
}
|
|
|
|
static type Copy(const ::std::tr1::tuple<ElementPointer, Size>& array) {
|
2009-09-16 17:38:08 +00:00
|
|
|
using ::std::tr1::get;
|
|
|
|
return type(get<0>(array), get<1>(array), kCopy);
|
2009-06-04 05:48:20 +00:00
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// The following specialization prevents the user from instantiating
|
|
|
|
// StlContainer with a reference type.
|
|
|
|
template <typename T> class StlContainerView<T&>;
|
|
|
|
|
2008-12-10 05:08:54 +00:00
|
|
|
} // namespace internal
|
|
|
|
} // namespace testing
|
|
|
|
|
|
|
|
#endif // GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
|