// Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file implements some commonly used argument matchers. More // matchers can be defined by the user implementing the // MatcherInterface interface if necessary. #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ #include // NOLINT #include #include #include #include #include #include #include namespace testing { // To implement a matcher Foo for type T, define: // 1. a class FooMatcherImpl that implements the // MatcherInterface interface, and // 2. a factory function that creates a Matcher object from a // FooMatcherImpl*. // // The two-level delegation design makes it possible to allow a user // to write "v" instead of "Eq(v)" where a Matcher is expected, which // is impossible if we pass matchers by pointers. It also eases // ownership management as Matcher objects can now be copied like // plain values. // The implementation of a matcher. template class MatcherInterface { public: virtual ~MatcherInterface() {} // Returns true iff the matcher matches x. virtual bool Matches(T x) const = 0; // Describes this matcher to an ostream. virtual void DescribeTo(::std::ostream* os) const = 0; // Describes the negation of this matcher to an ostream. For // example, if the description of this matcher is "is greater than // 7", the negated description could be "is not greater than 7". // You are not required to override this when implementing // MatcherInterface, but it is highly advised so that your matcher // can produce good error messages. virtual void DescribeNegationTo(::std::ostream* os) const { *os << "not ("; DescribeTo(os); *os << ")"; } // Explains why x matches, or doesn't match, the matcher. Override // this to provide any additional information that helps a user // understand the match result. virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const { // By default, nothing more needs to be explained, as Google Mock // has already printed the value of x when this function is // called. } }; namespace internal { // An internal class for implementing Matcher, which will derive // from it. We put functionalities common to all Matcher // specializations here to avoid code duplication. template class MatcherBase { public: // Returns true iff this matcher matches x. bool Matches(T x) const { return impl_->Matches(x); } // Describes this matcher to an ostream. void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); } // Describes the negation of this matcher to an ostream. void DescribeNegationTo(::std::ostream* os) const { impl_->DescribeNegationTo(os); } // Explains why x matches, or doesn't match, the matcher. void ExplainMatchResultTo(T x, ::std::ostream* os) const { impl_->ExplainMatchResultTo(x, os); } protected: MatcherBase() {} // Constructs a matcher from its implementation. explicit MatcherBase(const MatcherInterface* impl) : impl_(impl) {} virtual ~MatcherBase() {} private: // shared_ptr (util/gtl/shared_ptr.h) and linked_ptr have similar // interfaces. The former dynamically allocates a chunk of memory // to hold the reference count, while the latter tracks all // references using a circular linked list without allocating // memory. It has been observed that linked_ptr performs better in // typical scenarios. However, shared_ptr can out-perform // linked_ptr when there are many more uses of the copy constructor // than the default constructor. // // If performance becomes a problem, we should see if using // shared_ptr helps. ::testing::internal::linked_ptr > impl_; }; // The default implementation of ExplainMatchResultTo() for // polymorphic matchers. template inline void ExplainMatchResultTo(const PolymorphicMatcherImpl& impl, const T& x, ::std::ostream* os) { // By default, nothing more needs to be said, as Google Mock already // prints the value of x elsewhere. } } // namespace internal // A Matcher is a copyable and IMMUTABLE (except by assignment) // object that can check whether a value of type T matches. The // implementation of Matcher is just a linked_ptr to const // MatcherInterface, so copying is fairly cheap. Don't inherit // from Matcher! template class Matcher : public internal::MatcherBase { public: // Constructs a null matcher. Needed for storing Matcher objects in // STL containers. Matcher() {} // Constructs a matcher from its implementation. explicit Matcher(const MatcherInterface* impl) : internal::MatcherBase(impl) {} // Implicit constructor here allows ipeople to write // EXPECT_CALL(foo, Bar(5)) instead of EXPECT_CALL(foo, Bar(Eq(5))) sometimes Matcher(T value); // NOLINT }; // The following two specializations allow the user to write str // instead of Eq(str) and "foo" instead of Eq("foo") when a string // matcher is expected. template <> class Matcher : public internal::MatcherBase { public: Matcher() {} explicit Matcher(const MatcherInterface* impl) : internal::MatcherBase(impl) {} // Allows the user to write str instead of Eq(str) sometimes, where // str is a string object. Matcher(const internal::string& s); // NOLINT // Allows the user to write "foo" instead of Eq("foo") sometimes. Matcher(const char* s); // NOLINT }; template <> class Matcher : public internal::MatcherBase { public: Matcher() {} explicit Matcher(const MatcherInterface* impl) : internal::MatcherBase(impl) {} // Allows the user to write str instead of Eq(str) sometimes, where // str is a string object. Matcher(const internal::string& s); // NOLINT // Allows the user to write "foo" instead of Eq("foo") sometimes. Matcher(const char* s); // NOLINT }; // The PolymorphicMatcher class template makes it easy to implement a // polymorphic matcher (i.e. a matcher that can match values of more // than one type, e.g. Eq(n) and NotNull()). // // To define a polymorphic matcher, a user first provides a Impl class // that has a Matches() method, a DescribeTo() method, and a // DescribeNegationTo() method. The Matches() method is usually a // method template (such that it works with multiple types). Then the // user creates the polymorphic matcher using // MakePolymorphicMatcher(). To provide additional explanation to the // match result, define a FREE function (or function template) // // void ExplainMatchResultTo(const Impl& matcher, const Value& value, // ::std::ostream* os); // // in the SAME NAME SPACE where Impl is defined. See the definition // of NotNull() for a complete example. template class PolymorphicMatcher { public: explicit PolymorphicMatcher(const Impl& impl) : impl_(impl) {} template operator Matcher() const { return Matcher(new MonomorphicImpl(impl_)); } private: template class MonomorphicImpl : public MatcherInterface { public: explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} virtual bool Matches(T x) const { return impl_.Matches(x); } virtual void DescribeTo(::std::ostream* os) const { impl_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { impl_.DescribeNegationTo(os); } virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const { using ::testing::internal::ExplainMatchResultTo; // C++ uses Argument-Dependent Look-up (aka Koenig Look-up) to // resolve the call to ExplainMatchResultTo() here. This // means that if there's a ExplainMatchResultTo() function // defined in the name space where class Impl is defined, it // will be picked by the compiler as the better match. // Otherwise the default implementation of it in // ::testing::internal will be picked. // // This look-up rule lets a writer of a polymorphic matcher // customize the behavior of ExplainMatchResultTo() when he // cares to. Nothing needs to be done by the writer if he // doesn't need to customize it. ExplainMatchResultTo(impl_, x, os); } private: const Impl impl_; }; const Impl impl_; }; // Creates a matcher from its implementation. This is easier to use // than the Matcher constructor as it doesn't require you to // explicitly write the template argument, e.g. // // MakeMatcher(foo); // vs // Matcher(foo); template inline Matcher MakeMatcher(const MatcherInterface* impl) { return Matcher(impl); }; // Creates a polymorphic matcher from its implementation. This is // easier to use than the PolymorphicMatcher constructor as it // doesn't require you to explicitly write the template argument, e.g. // // MakePolymorphicMatcher(foo); // vs // PolymorphicMatcher(foo); template inline PolymorphicMatcher MakePolymorphicMatcher(const Impl& impl) { return PolymorphicMatcher(impl); } // In order to be safe and clear, casting between different matcher // types is done explicitly via MatcherCast(m), which takes a // matcher m and returns a Matcher. It compiles only when T can be // statically converted to the argument type of m. template Matcher MatcherCast(M m); // A() returns a matcher that matches any value of type T. template Matcher A(); // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION // and MUST NOT BE USED IN USER CODE!!! namespace internal { // Appends the explanation on the result of matcher.Matches(value) to // os iff the explanation is not empty. template void ExplainMatchResultAsNeededTo(const Matcher& matcher, T value, ::std::ostream* os) { ::std::stringstream reason; matcher.ExplainMatchResultTo(value, &reason); const internal::string s = reason.str(); if (s != "") { *os << " (" << s << ")"; } } // An internal helper class for doing compile-time loop on a tuple's // fields. template class TuplePrefix { public: // TuplePrefix::Matches(matcher_tuple, value_tuple) returns true // iff the first N fields of matcher_tuple matches the first N // fields of value_tuple, respectively. template static bool Matches(const MatcherTuple& matcher_tuple, const ValueTuple& value_tuple) { using ::std::tr1::get; return TuplePrefix::Matches(matcher_tuple, value_tuple) && get(matcher_tuple).Matches(get(value_tuple)); } // TuplePrefix::DescribeMatchFailuresTo(matchers, values, os) // describes failures in matching the first N fields of matchers // against the first N fields of values. If there is no failure, // nothing will be streamed to os. template static void DescribeMatchFailuresTo(const MatcherTuple& matchers, const ValueTuple& values, ::std::ostream* os) { using ::std::tr1::tuple_element; using ::std::tr1::get; // First, describes failures in the first N - 1 fields. TuplePrefix::DescribeMatchFailuresTo(matchers, values, os); // Then describes the failure (if any) in the (N - 1)-th (0-based) // field. typename tuple_element::type matcher = get(matchers); typedef typename tuple_element::type Value; Value value = get(values); if (!matcher.Matches(value)) { // TODO(wan): include in the message the name of the parameter // as used in MOCK_METHOD*() when possible. *os << " Expected arg #" << N - 1 << ": "; get(matchers).DescribeTo(os); *os << "\n Actual: "; // We remove the reference in type Value to prevent the // universal printer from printing the address of value, which // isn't interesting to the user most of the time. The // matcher's ExplainMatchResultTo() method handles the case when // the address is interesting. internal::UniversalPrinter:: Print(value, os); ExplainMatchResultAsNeededTo(matcher, value, os); *os << "\n"; } } }; // The base case. template <> class TuplePrefix<0> { public: template static bool Matches(const MatcherTuple& matcher_tuple, const ValueTuple& value_tuple) { return true; } template static void DescribeMatchFailuresTo(const MatcherTuple& matchers, const ValueTuple& values, ::std::ostream* os) {} }; // TupleMatches(matcher_tuple, value_tuple) returns true iff all // matchers in matcher_tuple match the corresponding fields in // value_tuple. It is a compiler error if matcher_tuple and // value_tuple have different number of fields or incompatible field // types. template bool TupleMatches(const MatcherTuple& matcher_tuple, const ValueTuple& value_tuple) { using ::std::tr1::tuple_size; // Makes sure that matcher_tuple and value_tuple have the same // number of fields. GMOCK_COMPILE_ASSERT(tuple_size::value == tuple_size::value, matcher_and_value_have_different_numbers_of_fields); return TuplePrefix::value>:: Matches(matcher_tuple, value_tuple); } // Describes failures in matching matchers against values. If there // is no failure, nothing will be streamed to os. template void DescribeMatchFailureTupleTo(const MatcherTuple& matchers, const ValueTuple& values, ::std::ostream* os) { using ::std::tr1::tuple_size; TuplePrefix::value>::DescribeMatchFailuresTo( matchers, values, os); } // The MatcherCastImpl class template is a helper for implementing // MatcherCast(). We need this helper in order to partially // specialize the implementation of MatcherCast() (C++ allows // class/struct templates to be partially specialized, but not // function templates.). // This general version is used when MatcherCast()'s argument is a // polymorphic matcher (i.e. something that can be converted to a // Matcher but is not one yet; for example, Eq(value)). template class MatcherCastImpl { public: static Matcher Cast(M polymorphic_matcher) { return Matcher(polymorphic_matcher); } }; // This more specialized version is used when MatcherCast()'s argument // is already a Matcher. This only compiles when type T can be // statically converted to type U. template class MatcherCastImpl > { public: static Matcher Cast(const Matcher& source_matcher) { return Matcher(new Impl(source_matcher)); } private: class Impl : public MatcherInterface { public: explicit Impl(const Matcher& source_matcher) : source_matcher_(source_matcher) {} // We delegate the matching logic to the source matcher. virtual bool Matches(T x) const { return source_matcher_.Matches(static_cast(x)); } virtual void DescribeTo(::std::ostream* os) const { source_matcher_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { source_matcher_.DescribeNegationTo(os); } virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const { source_matcher_.ExplainMatchResultTo(static_cast(x), os); } private: const Matcher source_matcher_; }; }; // This even more specialized version is used for efficiently casting // a matcher to its own type. template class MatcherCastImpl > { public: static Matcher Cast(const Matcher& matcher) { return matcher; } }; // Implements A(). template class AnyMatcherImpl : public MatcherInterface { public: virtual bool Matches(T x) const { return true; } virtual void DescribeTo(::std::ostream* os) const { *os << "is anything"; } virtual void DescribeNegationTo(::std::ostream* os) const { // This is mostly for completeness' safe, as it's not very useful // to write Not(A()). However we cannot completely rule out // such a possibility, and it doesn't hurt to be prepared. *os << "never matches"; } }; // Implements _, a matcher that matches any value of any // type. This is a polymorphic matcher, so we need a template type // conversion operator to make it appearing as a Matcher for any // type T. class AnythingMatcher { public: template operator Matcher() const { return A(); } }; // Implements a matcher that compares a given value with a // pre-supplied value using one of the ==, <=, <, etc, operators. The // two values being compared don't have to have the same type. // // The matcher defined here is polymorphic (for example, Eq(5) can be // used to match an int, a short, a double, etc). Therefore we use // a template type conversion operator in the implementation. // // We define this as a macro in order to eliminate duplicated source // code. // // The following template definition assumes that the Rhs parameter is // a "bare" type (i.e. neither 'const T' nor 'T&'). #define GMOCK_IMPLEMENT_COMPARISON_MATCHER(name, op, relation) \ template class name##Matcher { \ public: \ explicit name##Matcher(const Rhs& rhs) : rhs_(rhs) {} \ template \ operator Matcher() const { \ return MakeMatcher(new Impl(rhs_)); \ } \ private: \ template \ class Impl : public MatcherInterface { \ public: \ explicit Impl(const Rhs& rhs) : rhs_(rhs) {} \ virtual bool Matches(Lhs lhs) const { return lhs op rhs_; } \ virtual void DescribeTo(::std::ostream* os) const { \ *os << "is " relation " "; \ UniversalPrinter::Print(rhs_, os); \ } \ virtual void DescribeNegationTo(::std::ostream* os) const { \ *os << "is not " relation " "; \ UniversalPrinter::Print(rhs_, os); \ } \ private: \ Rhs rhs_; \ }; \ Rhs rhs_; \ } // Implements Eq(v), Ge(v), Gt(v), Le(v), Lt(v), and Ne(v) // respectively. GMOCK_IMPLEMENT_COMPARISON_MATCHER(Eq, ==, "equal to"); GMOCK_IMPLEMENT_COMPARISON_MATCHER(Ge, >=, "greater than or equal to"); GMOCK_IMPLEMENT_COMPARISON_MATCHER(Gt, >, "greater than"); GMOCK_IMPLEMENT_COMPARISON_MATCHER(Le, <=, "less than or equal to"); GMOCK_IMPLEMENT_COMPARISON_MATCHER(Lt, <, "less than"); GMOCK_IMPLEMENT_COMPARISON_MATCHER(Ne, !=, "not equal to"); #undef GMOCK_IMPLEMENT_COMPARISON_MATCHER // Implements the polymorphic NotNull() matcher, which matches any // pointer that is not NULL. class NotNullMatcher { public: template bool Matches(T* p) const { return p != NULL; } void DescribeTo(::std::ostream* os) const { *os << "is not NULL"; } void DescribeNegationTo(::std::ostream* os) const { *os << "is NULL"; } }; // Ref(variable) matches any argument that is a reference to // 'variable'. This matcher is polymorphic as it can match any // super type of the type of 'variable'. // // The RefMatcher template class implements Ref(variable). It can // only be instantiated with a reference type. This prevents a user // from mistakenly using Ref(x) to match a non-reference function // argument. For example, the following will righteously cause a // compiler error: // // int n; // Matcher m1 = Ref(n); // This won't compile. // Matcher m2 = Ref(n); // This will compile. template class RefMatcher; template class RefMatcher { // Google Mock is a generic framework and thus needs to support // mocking any function types, including those that take non-const // reference arguments. Therefore the template parameter T (and // Super below) can be instantiated to either a const type or a // non-const type. public: // RefMatcher() takes a T& instead of const T&, as we want the // compiler to catch using Ref(const_value) as a matcher for a // non-const reference. explicit RefMatcher(T& x) : object_(x) {} // NOLINT template operator Matcher() const { // By passing object_ (type T&) to Impl(), which expects a Super&, // we make sure that Super is a super type of T. In particular, // this catches using Ref(const_value) as a matcher for a // non-const reference, as you cannot implicitly convert a const // reference to a non-const reference. return MakeMatcher(new Impl(object_)); } private: template class Impl : public MatcherInterface { public: explicit Impl(Super& x) : object_(x) {} // NOLINT // Matches() takes a Super& (as opposed to const Super&) in // order to match the interface MatcherInterface. virtual bool Matches(Super& x) const { return &x == &object_; } // NOLINT virtual void DescribeTo(::std::ostream* os) const { *os << "references the variable "; UniversalPrinter::Print(object_, os); } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "does not reference the variable "; UniversalPrinter::Print(object_, os); } virtual void ExplainMatchResultTo(Super& x, // NOLINT ::std::ostream* os) const { *os << "is located @" << static_cast(&x); } private: const Super& object_; }; T& object_; }; // Polymorphic helper functions for narrow and wide string matchers. inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) { return String::CaseInsensitiveCStringEquals(lhs, rhs); } inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs, const wchar_t* rhs) { return String::CaseInsensitiveWideCStringEquals(lhs, rhs); } // String comparison for narrow or wide strings that can have embedded NUL // characters. template bool CaseInsensitiveStringEquals(const StringType& s1, const StringType& s2) { // Are the heads equal? if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) { return false; } // Skip the equal heads. const typename StringType::value_type nul = 0; const size_t i1 = s1.find(nul), i2 = s2.find(nul); // Are we at the end of either s1 or s2? if (i1 == StringType::npos || i2 == StringType::npos) { return i1 == i2; } // Are the tails equal? return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1)); } // String matchers. // Implements equality-based string matchers like StrEq, StrCaseNe, and etc. template class StrEqualityMatcher { public: typedef typename StringType::const_pointer ConstCharPointer; StrEqualityMatcher(const StringType& str, bool expect_eq, bool case_sensitive) : string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {} // When expect_eq_ is true, returns true iff s is equal to string_; // otherwise returns true iff s is not equal to string_. bool Matches(ConstCharPointer s) const { if (s == NULL) { return !expect_eq_; } return Matches(StringType(s)); } bool Matches(const StringType& s) const { const bool eq = case_sensitive_ ? s == string_ : CaseInsensitiveStringEquals(s, string_); return expect_eq_ == eq; } void DescribeTo(::std::ostream* os) const { DescribeToHelper(expect_eq_, os); } void DescribeNegationTo(::std::ostream* os) const { DescribeToHelper(!expect_eq_, os); } private: void DescribeToHelper(bool expect_eq, ::std::ostream* os) const { *os << "is "; if (!expect_eq) { *os << "not "; } *os << "equal to "; if (!case_sensitive_) { *os << "(ignoring case) "; } UniversalPrinter::Print(string_, os); } const StringType string_; const bool expect_eq_; const bool case_sensitive_; }; // Implements the polymorphic HasSubstr(substring) matcher, which // can be used as a Matcher as long as T can be converted to a // string. template class HasSubstrMatcher { public: typedef typename StringType::const_pointer ConstCharPointer; explicit HasSubstrMatcher(const StringType& substring) : substring_(substring) {} // These overloaded methods allow HasSubstr(substring) to be used as a // Matcher as long as T can be converted to string. Returns true // iff s contains substring_ as a substring. bool Matches(ConstCharPointer s) const { return s != NULL && Matches(StringType(s)); } bool Matches(const StringType& s) const { return s.find(substring_) != StringType::npos; } // Describes what this matcher matches. void DescribeTo(::std::ostream* os) const { *os << "has substring "; UniversalPrinter::Print(substring_, os); } void DescribeNegationTo(::std::ostream* os) const { *os << "has no substring "; UniversalPrinter::Print(substring_, os); } private: const StringType substring_; }; // Implements the polymorphic StartsWith(substring) matcher, which // can be used as a Matcher as long as T can be converted to a // string. template class StartsWithMatcher { public: typedef typename StringType::const_pointer ConstCharPointer; explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) { } // These overloaded methods allow StartsWith(prefix) to be used as a // Matcher as long as T can be converted to string. Returns true // iff s starts with prefix_. bool Matches(ConstCharPointer s) const { return s != NULL && Matches(StringType(s)); } bool Matches(const StringType& s) const { return s.length() >= prefix_.length() && s.substr(0, prefix_.length()) == prefix_; } void DescribeTo(::std::ostream* os) const { *os << "starts with "; UniversalPrinter::Print(prefix_, os); } void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't start with "; UniversalPrinter::Print(prefix_, os); } private: const StringType prefix_; }; // Implements the polymorphic EndsWith(substring) matcher, which // can be used as a Matcher as long as T can be converted to a // string. template class EndsWithMatcher { public: typedef typename StringType::const_pointer ConstCharPointer; explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {} // These overloaded methods allow EndsWith(suffix) to be used as a // Matcher as long as T can be converted to string. Returns true // iff s ends with suffix_. bool Matches(ConstCharPointer s) const { return s != NULL && Matches(StringType(s)); } bool Matches(const StringType& s) const { return s.length() >= suffix_.length() && s.substr(s.length() - suffix_.length()) == suffix_; } void DescribeTo(::std::ostream* os) const { *os << "ends with "; UniversalPrinter::Print(suffix_, os); } void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't end with "; UniversalPrinter::Print(suffix_, os); } private: const StringType suffix_; }; #if GMOCK_HAS_REGEX // Implements polymorphic matchers MatchesRegex(regex) and // ContainsRegex(regex), which can be used as a Matcher as long as // T can be converted to a string. class MatchesRegexMatcher { public: MatchesRegexMatcher(const RE* regex, bool full_match) : regex_(regex), full_match_(full_match) {} // These overloaded methods allow MatchesRegex(regex) to be used as // a Matcher as long as T can be converted to string. Returns // true iff s matches regular expression regex. When full_match_ is // true, a full match is done; otherwise a partial match is done. bool Matches(const char* s) const { return s != NULL && Matches(internal::string(s)); } bool Matches(const internal::string& s) const { return full_match_ ? RE::FullMatch(s, *regex_) : RE::PartialMatch(s, *regex_); } void DescribeTo(::std::ostream* os) const { *os << (full_match_ ? "matches" : "contains") << " regular expression "; UniversalPrinter::Print(regex_->pattern(), os); } void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't " << (full_match_ ? "match" : "contain") << " regular expression "; UniversalPrinter::Print(regex_->pattern(), os); } private: const internal::linked_ptr regex_; const bool full_match_; }; #endif // GMOCK_HAS_REGEX // Implements a matcher that compares the two fields of a 2-tuple // using one of the ==, <=, <, etc, operators. The two fields being // compared don't have to have the same type. // // The matcher defined here is polymorphic (for example, Eq() can be // used to match a tuple, a tuple, // etc). Therefore we use a template type conversion operator in the // implementation. // // We define this as a macro in order to eliminate duplicated source // code. #define GMOCK_IMPLEMENT_COMPARISON2_MATCHER(name, op, relation) \ class name##2Matcher { \ public: \ template \ operator Matcher&>() const { \ return MakeMatcher(new Impl); \ } \ private: \ template \ class Impl : public MatcherInterface&> { \ public: \ virtual bool Matches(const ::std::tr1::tuple& args) const { \ return ::std::tr1::get<0>(args) op ::std::tr1::get<1>(args); \ } \ virtual void DescribeTo(::std::ostream* os) const { \ *os << "argument #0 is " relation " argument #1"; \ } \ virtual void DescribeNegationTo(::std::ostream* os) const { \ *os << "argument #0 is not " relation " argument #1"; \ } \ }; \ } // Implements Eq(), Ge(), Gt(), Le(), Lt(), and Ne() respectively. GMOCK_IMPLEMENT_COMPARISON2_MATCHER(Eq, ==, "equal to"); GMOCK_IMPLEMENT_COMPARISON2_MATCHER(Ge, >=, "greater than or equal to"); GMOCK_IMPLEMENT_COMPARISON2_MATCHER(Gt, >, "greater than"); GMOCK_IMPLEMENT_COMPARISON2_MATCHER(Le, <=, "less than or equal to"); GMOCK_IMPLEMENT_COMPARISON2_MATCHER(Lt, <, "less than"); GMOCK_IMPLEMENT_COMPARISON2_MATCHER(Ne, !=, "not equal to"); #undef GMOCK_IMPLEMENT_COMPARISON2_MATCHER // Implements the Not(m) matcher, which matches a value that doesn't // match matcher m. template class NotMatcher { public: explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {} // This template type conversion operator allows Not(m) to be used // to match any type m can match. template operator Matcher() const { return Matcher(new Impl(matcher_)); } private: // Implements the Not(...) matcher for a particular argument type T. template class Impl : public MatcherInterface { public: explicit Impl(const Matcher& matcher) : matcher_(matcher) {} virtual bool Matches(T x) const { return !matcher_.Matches(x); } virtual void DescribeTo(::std::ostream* os) const { matcher_.DescribeNegationTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { matcher_.DescribeTo(os); } virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const { matcher_.ExplainMatchResultTo(x, os); } private: const Matcher matcher_; }; InnerMatcher matcher_; }; // Used for implementing the AllOf(m_1, ..., m_n) matcher, which // matches a value that matches all of the matchers m_1, ..., and m_n. template class BothOfMatcher { public: BothOfMatcher(Matcher1 matcher1, Matcher2 matcher2) : matcher1_(matcher1), matcher2_(matcher2) {} // This template type conversion operator allows a // BothOfMatcher object to match any type that // both Matcher1 and Matcher2 can match. template operator Matcher() const { return Matcher(new Impl(matcher1_, matcher2_)); } private: // Implements the AllOf(m1, m2) matcher for a particular argument // type T. template class Impl : public MatcherInterface { public: Impl(const Matcher& matcher1, const Matcher& matcher2) : matcher1_(matcher1), matcher2_(matcher2) {} virtual bool Matches(T x) const { return matcher1_.Matches(x) && matcher2_.Matches(x); } virtual void DescribeTo(::std::ostream* os) const { *os << "("; matcher1_.DescribeTo(os); *os << ") and ("; matcher2_.DescribeTo(os); *os << ")"; } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "not "; DescribeTo(os); } virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const { if (Matches(x)) { // When both matcher1_ and matcher2_ match x, we need to // explain why *both* of them match. ::std::stringstream ss1; matcher1_.ExplainMatchResultTo(x, &ss1); const internal::string s1 = ss1.str(); ::std::stringstream ss2; matcher2_.ExplainMatchResultTo(x, &ss2); const internal::string s2 = ss2.str(); if (s1 == "") { *os << s2; } else { *os << s1; if (s2 != "") { *os << "; " << s2; } } } else { // Otherwise we only need to explain why *one* of them fails // to match. if (!matcher1_.Matches(x)) { matcher1_.ExplainMatchResultTo(x, os); } else { matcher2_.ExplainMatchResultTo(x, os); } } } private: const Matcher matcher1_; const Matcher matcher2_; }; Matcher1 matcher1_; Matcher2 matcher2_; }; // Used for implementing the AnyOf(m_1, ..., m_n) matcher, which // matches a value that matches at least one of the matchers m_1, ..., // and m_n. template class EitherOfMatcher { public: EitherOfMatcher(Matcher1 matcher1, Matcher2 matcher2) : matcher1_(matcher1), matcher2_(matcher2) {} // This template type conversion operator allows a // EitherOfMatcher object to match any type that // both Matcher1 and Matcher2 can match. template operator Matcher() const { return Matcher(new Impl(matcher1_, matcher2_)); } private: // Implements the AnyOf(m1, m2) matcher for a particular argument // type T. template class Impl : public MatcherInterface { public: Impl(const Matcher& matcher1, const Matcher& matcher2) : matcher1_(matcher1), matcher2_(matcher2) {} virtual bool Matches(T x) const { return matcher1_.Matches(x) || matcher2_.Matches(x); } virtual void DescribeTo(::std::ostream* os) const { *os << "("; matcher1_.DescribeTo(os); *os << ") or ("; matcher2_.DescribeTo(os); *os << ")"; } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "not "; DescribeTo(os); } virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const { if (Matches(x)) { // If either matcher1_ or matcher2_ matches x, we just need // to explain why *one* of them matches. if (matcher1_.Matches(x)) { matcher1_.ExplainMatchResultTo(x, os); } else { matcher2_.ExplainMatchResultTo(x, os); } } else { // Otherwise we need to explain why *neither* matches. ::std::stringstream ss1; matcher1_.ExplainMatchResultTo(x, &ss1); const internal::string s1 = ss1.str(); ::std::stringstream ss2; matcher2_.ExplainMatchResultTo(x, &ss2); const internal::string s2 = ss2.str(); if (s1 == "") { *os << s2; } else { *os << s1; if (s2 != "") { *os << "; " << s2; } } } } private: const Matcher matcher1_; const Matcher matcher2_; }; Matcher1 matcher1_; Matcher2 matcher2_; }; // Used for implementing Truly(pred), which turns a predicate into a // matcher. template class TrulyMatcher { public: explicit TrulyMatcher(Predicate pred) : predicate_(pred) {} // This method template allows Truly(pred) to be used as a matcher // for type T where T is the argument type of predicate 'pred'. The // argument is passed by reference as the predicate may be // interested in the address of the argument. template bool Matches(T& x) const { #ifdef GTEST_OS_WINDOWS // MSVC warns about converting a value into bool (warning 4800). #pragma warning(push) // Saves the current warning state. #pragma warning(disable:4800) // Temporarily disables warning 4800. #endif // GTEST_OS_WINDOWS return predicate_(x); #ifdef GTEST_OS_WINDOWS #pragma warning(pop) // Restores the warning state. #endif // GTEST_OS_WINDOWS } void DescribeTo(::std::ostream* os) const { *os << "satisfies the given predicate"; } void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't satisfy the given predicate"; } private: Predicate predicate_; }; // Used for implementing Matches(matcher), which turns a matcher into // a predicate. template class MatcherAsPredicate { public: explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {} // This template operator() allows Matches(m) to be used as a // predicate on type T where m is a matcher on type T. // // The argument x is passed by reference instead of by value, as // some matcher may be interested in its address (e.g. as in // Matches(Ref(n))(x)). template bool operator()(const T& x) const { // We let matcher_ commit to a particular type here instead of // when the MatcherAsPredicate object was constructed. This // allows us to write Matches(m) where m is a polymorphic matcher // (e.g. Eq(5)). // // If we write Matcher(matcher_).Matches(x) here, it won't // compile when matcher_ has type Matcher; if we write // Matcher(matcher_).Matches(x) here, it won't compile // when matcher_ has type Matcher; if we just write // matcher_.Matches(x), it won't compile when matcher_ is // polymorphic, e.g. Eq(5). // // MatcherCast() is necessary for making the code work // in all of the above situations. return MatcherCast(matcher_).Matches(x); } private: M matcher_; }; // For implementing ASSERT_THAT() and EXPECT_THAT(). The template // argument M must be a type that can be converted to a matcher. template class PredicateFormatterFromMatcher { public: explicit PredicateFormatterFromMatcher(const M& m) : matcher_(m) {} // This template () operator allows a PredicateFormatterFromMatcher // object to act as a predicate-formatter suitable for using with // Google Test's EXPECT_PRED_FORMAT1() macro. template AssertionResult operator()(const char* value_text, const T& x) const { // We convert matcher_ to a Matcher *now* instead of // when the PredicateFormatterFromMatcher object was constructed, // as matcher_ may be polymorphic (e.g. NotNull()) and we won't // know which type to instantiate it to until we actually see the // type of x here. // // We write MatcherCast(matcher_) instead of // Matcher(matcher_), as the latter won't compile when // matcher_ has type Matcher (e.g. An()). const Matcher matcher = MatcherCast(matcher_); if (matcher.Matches(x)) { return AssertionSuccess(); } else { ::std::stringstream ss; ss << "Value of: " << value_text << "\n" << "Expected: "; matcher.DescribeTo(&ss); ss << "\n Actual: "; UniversalPrinter::Print(x, &ss); ExplainMatchResultAsNeededTo(matcher, x, &ss); return AssertionFailure(Message() << ss.str()); } } private: const M matcher_; }; // A helper function for converting a matcher to a predicate-formatter // without the user needing to explicitly write the type. This is // used for implementing ASSERT_THAT() and EXPECT_THAT(). template inline PredicateFormatterFromMatcher MakePredicateFormatterFromMatcher(const M& matcher) { return PredicateFormatterFromMatcher(matcher); } // Implements the polymorphic floating point equality matcher, which // matches two float values using ULP-based approximation. The // template is meant to be instantiated with FloatType being either // float or double. template class FloatingEqMatcher { public: // Constructor for FloatingEqMatcher. // The matcher's input will be compared with rhs. The matcher treats two // NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards, // equality comparisons between NANs will always return false. FloatingEqMatcher(FloatType rhs, bool nan_eq_nan) : rhs_(rhs), nan_eq_nan_(nan_eq_nan) {} // Implements floating point equality matcher as a Matcher. template class Impl : public MatcherInterface { public: Impl(FloatType rhs, bool nan_eq_nan) : rhs_(rhs), nan_eq_nan_(nan_eq_nan) {} virtual bool Matches(T value) const { const FloatingPoint lhs(value), rhs(rhs_); // Compares NaNs first, if nan_eq_nan_ is true. if (nan_eq_nan_ && lhs.is_nan()) { return rhs.is_nan(); } return lhs.AlmostEquals(rhs); } virtual void DescribeTo(::std::ostream* os) const { // os->precision() returns the previously set precision, which we // store to restore the ostream to its original configuration // after outputting. const ::std::streamsize old_precision = os->precision( ::std::numeric_limits::digits10 + 2); if (FloatingPoint(rhs_).is_nan()) { if (nan_eq_nan_) { *os << "is NaN"; } else { *os << "never matches"; } } else { *os << "is approximately " << rhs_; } os->precision(old_precision); } virtual void DescribeNegationTo(::std::ostream* os) const { // As before, get original precision. const ::std::streamsize old_precision = os->precision( ::std::numeric_limits::digits10 + 2); if (FloatingPoint(rhs_).is_nan()) { if (nan_eq_nan_) { *os << "is not NaN"; } else { *os << "is anything"; } } else { *os << "is not approximately " << rhs_; } // Restore original precision. os->precision(old_precision); } private: const FloatType rhs_; const bool nan_eq_nan_; }; // The following 3 type conversion operators allow FloatEq(rhs) and // NanSensitiveFloatEq(rhs) to be used as a Matcher, a // Matcher, or a Matcher, but nothing else. // (While Google's C++ coding style doesn't allow arguments passed // by non-const reference, we may see them in code not conforming to // the style. Therefore Google Mock needs to support them.) operator Matcher() const { return MakeMatcher(new Impl(rhs_, nan_eq_nan_)); } operator Matcher() const { return MakeMatcher(new Impl(rhs_, nan_eq_nan_)); } operator Matcher() const { return MakeMatcher(new Impl(rhs_, nan_eq_nan_)); } private: const FloatType rhs_; const bool nan_eq_nan_; }; // Implements the Pointee(m) matcher for matching a pointer whose // pointee matches matcher m. The pointer can be either raw or smart. template class PointeeMatcher { public: explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} // This type conversion operator template allows Pointee(m) to be // used as a matcher for any pointer type whose pointee type is // compatible with the inner matcher, where type Pointer can be // either a raw pointer or a smart pointer. // // The reason we do this instead of relying on // MakePolymorphicMatcher() is that the latter is not flexible // enough for implementing the DescribeTo() method of Pointee(). template operator Matcher() const { return MakeMatcher(new Impl(matcher_)); } private: // The monomorphic implementation that works for a particular pointer type. template class Impl : public MatcherInterface { public: typedef typename PointeeOf::type Pointee; explicit Impl(const InnerMatcher& matcher) : matcher_(MatcherCast(matcher)) {} virtual bool Matches(Pointer p) const { return GetRawPointer(p) != NULL && matcher_.Matches(*p); } virtual void DescribeTo(::std::ostream* os) const { *os << "points to a value that "; matcher_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "does not point to a value that "; matcher_.DescribeTo(os); } virtual void ExplainMatchResultTo(Pointer pointer, ::std::ostream* os) const { if (GetRawPointer(pointer) == NULL) return; ::std::stringstream ss; matcher_.ExplainMatchResultTo(*pointer, &ss); const internal::string s = ss.str(); if (s != "") { *os << "points to a value that " << s; } } private: const Matcher matcher_; }; const InnerMatcher matcher_; }; // Implements the Field() matcher for matching a field (i.e. member // variable) of an object. template class FieldMatcher { public: FieldMatcher(FieldType Class::*field, const Matcher& matcher) : field_(field), matcher_(matcher) {} // Returns true iff the inner matcher matches obj.field. bool Matches(const Class& obj) const { return matcher_.Matches(obj.*field_); } // Returns true iff the inner matcher matches obj->field. bool Matches(const Class* p) const { return (p != NULL) && matcher_.Matches(p->*field_); } void DescribeTo(::std::ostream* os) const { *os << "the given field "; matcher_.DescribeTo(os); } void DescribeNegationTo(::std::ostream* os) const { *os << "the given field "; matcher_.DescribeNegationTo(os); } void ExplainMatchResultTo(const Class& obj, ::std::ostream* os) const { ::std::stringstream ss; matcher_.ExplainMatchResultTo(obj.*field_, &ss); const internal::string s = ss.str(); if (s != "") { *os << "the given field " << s; } } void ExplainMatchResultTo(const Class* p, ::std::ostream* os) const { if (p != NULL) { ExplainMatchResultTo(*p, os); } } private: const FieldType Class::*field_; const Matcher matcher_; }; // Explains the result of matching an object against a field matcher. template void ExplainMatchResultTo(const FieldMatcher& matcher, const Class& obj, ::std::ostream* os) { matcher.ExplainMatchResultTo(obj, os); } // Explains the result of matching a pointer against a field matcher. template void ExplainMatchResultTo(const FieldMatcher& matcher, const Class* p, ::std::ostream* os) { matcher.ExplainMatchResultTo(p, os); } // Implements the Property() matcher for matching a property // (i.e. return value of a getter method) of an object. template class PropertyMatcher { public: // The property may have a reference type, so 'const PropertyType&' // may cause double references and fail to compile. That's why we // need GMOCK_REFERENCE_TO_CONST, which works regardless of // PropertyType being a reference or not. typedef GMOCK_REFERENCE_TO_CONST(PropertyType) RefToConstProperty; PropertyMatcher(PropertyType (Class::*property)() const, const Matcher& matcher) : property_(property), matcher_(matcher) {} // Returns true iff obj.property() matches the inner matcher. bool Matches(const Class& obj) const { return matcher_.Matches((obj.*property_)()); } // Returns true iff p->property() matches the inner matcher. bool Matches(const Class* p) const { return (p != NULL) && matcher_.Matches((p->*property_)()); } void DescribeTo(::std::ostream* os) const { *os << "the given property "; matcher_.DescribeTo(os); } void DescribeNegationTo(::std::ostream* os) const { *os << "the given property "; matcher_.DescribeNegationTo(os); } void ExplainMatchResultTo(const Class& obj, ::std::ostream* os) const { ::std::stringstream ss; matcher_.ExplainMatchResultTo((obj.*property_)(), &ss); const internal::string s = ss.str(); if (s != "") { *os << "the given property " << s; } } void ExplainMatchResultTo(const Class* p, ::std::ostream* os) const { if (p != NULL) { ExplainMatchResultTo(*p, os); } } private: PropertyType (Class::*property_)() const; const Matcher matcher_; }; // Explains the result of matching an object against a property matcher. template void ExplainMatchResultTo(const PropertyMatcher& matcher, const Class& obj, ::std::ostream* os) { matcher.ExplainMatchResultTo(obj, os); } // Explains the result of matching a pointer against a property matcher. template void ExplainMatchResultTo(const PropertyMatcher& matcher, const Class* p, ::std::ostream* os) { matcher.ExplainMatchResultTo(p, os); } // Type traits specifying various features of different functors for ResultOf. // The default template specifies features for functor objects. // Functor classes have to typedef argument_type and result_type // to be compatible with ResultOf. template struct CallableTraits { typedef typename Functor::result_type ResultType; typedef Functor StorageType; static void CheckIsValid(Functor functor) {} template static ResultType Invoke(Functor f, T arg) { return f(arg); } }; // Specialization for function pointers. template struct CallableTraits { typedef ResType ResultType; typedef ResType(*StorageType)(ArgType); static void CheckIsValid(ResType(*f)(ArgType)) { GMOCK_CHECK_(f != NULL) << "NULL function pointer is passed into ResultOf()."; } template static ResType Invoke(ResType(*f)(ArgType), T arg) { return (*f)(arg); } }; // Implements the ResultOf() matcher for matching a return value of a // unary function of an object. template class ResultOfMatcher { public: typedef typename CallableTraits::ResultType ResultType; ResultOfMatcher(Callable callable, const Matcher& matcher) : callable_(callable), matcher_(matcher) { CallableTraits::CheckIsValid(callable_); } template operator Matcher() const { return Matcher(new Impl(callable_, matcher_)); } private: typedef typename CallableTraits::StorageType CallableStorageType; template class Impl : public MatcherInterface { public: Impl(CallableStorageType callable, const Matcher& matcher) : callable_(callable), matcher_(matcher) {} // Returns true iff callable_(obj) matches the inner matcher. // The calling syntax is different for different types of callables // so we abstract it in CallableTraits::Invoke(). virtual bool Matches(T obj) const { return matcher_.Matches( CallableTraits::template Invoke(callable_, obj)); } virtual void DescribeTo(::std::ostream* os) const { *os << "result of the given callable "; matcher_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "result of the given callable "; matcher_.DescribeNegationTo(os); } virtual void ExplainMatchResultTo(T obj, ::std::ostream* os) const { ::std::stringstream ss; matcher_.ExplainMatchResultTo( CallableTraits::template Invoke(callable_, obj), &ss); const internal::string s = ss.str(); if (s != "") *os << "result of the given callable " << s; } private: // Functors often define operator() as non-const method even though // they are actualy stateless. But we need to use them even when // 'this' is a const pointer. It's the user's responsibility not to // use stateful callables with ResultOf(), which does't guarantee // how many times the callable will be invoked. mutable CallableStorageType callable_; const Matcher matcher_; }; // class Impl const CallableStorageType callable_; const Matcher matcher_; }; // Explains the result of matching a value against a functor matcher. template void ExplainMatchResultTo(const ResultOfMatcher& matcher, T obj, ::std::ostream* os) { matcher.ExplainMatchResultTo(obj, os); } } // namespace internal // Implements MatcherCast(). template inline Matcher MatcherCast(M matcher) { return internal::MatcherCastImpl::Cast(matcher); } // _ is a matcher that matches anything of any type. // // This definition is fine as: // // 1. The C++ standard permits using the name _ in a namespace that // is not the global namespace or ::std. // 2. The AnythingMatcher class has no data member or constructor, // so it's OK to create global variables of this type. // 3. c-style has approved of using _ in this case. const internal::AnythingMatcher _ = {}; // Creates a matcher that matches any value of the given type T. template inline Matcher A() { return MakeMatcher(new internal::AnyMatcherImpl()); } // Creates a matcher that matches any value of the given type T. template inline Matcher An() { return A(); } // Creates a polymorphic matcher that matches anything equal to x. // Note: if the parameter of Eq() were declared as const T&, Eq("foo") // wouldn't compile. template inline internal::EqMatcher Eq(T x) { return internal::EqMatcher(x); } // Constructs a Matcher from a 'value' of type T. The constructed // matcher matches any value that's equal to 'value'. template Matcher::Matcher(T value) { *this = Eq(value); } // Creates a monomorphic matcher that matches anything with type Lhs // and equal to rhs. A user may need to use this instead of Eq(...) // in order to resolve an overloading ambiguity. // // TypedEq(x) is just a convenient short-hand for Matcher(Eq(x)) // or Matcher(x), but more readable than the latter. // // We could define similar monomorphic matchers for other comparison // operations (e.g. TypedLt, TypedGe, and etc), but decided not to do // it yet as those are used much less than Eq() in practice. A user // can always write Matcher(Lt(5)) to be explicit about the type, // for example. template inline Matcher TypedEq(const Rhs& rhs) { return Eq(rhs); } // Creates a polymorphic matcher that matches anything >= x. template inline internal::GeMatcher Ge(Rhs x) { return internal::GeMatcher(x); } // Creates a polymorphic matcher that matches anything > x. template inline internal::GtMatcher Gt(Rhs x) { return internal::GtMatcher(x); } // Creates a polymorphic matcher that matches anything <= x. template inline internal::LeMatcher Le(Rhs x) { return internal::LeMatcher(x); } // Creates a polymorphic matcher that matches anything < x. template inline internal::LtMatcher Lt(Rhs x) { return internal::LtMatcher(x); } // Creates a polymorphic matcher that matches anything != x. template inline internal::NeMatcher Ne(Rhs x) { return internal::NeMatcher(x); } // Creates a polymorphic matcher that matches any non-NULL pointer. // This is convenient as Not(NULL) doesn't compile (the compiler // thinks that that expression is comparing a pointer with an integer). inline PolymorphicMatcher NotNull() { return MakePolymorphicMatcher(internal::NotNullMatcher()); } // Creates a polymorphic matcher that matches any argument that // references variable x. template inline internal::RefMatcher Ref(T& x) { // NOLINT return internal::RefMatcher(x); } // Creates a matcher that matches any double argument approximately // equal to rhs, where two NANs are considered unequal. inline internal::FloatingEqMatcher DoubleEq(double rhs) { return internal::FloatingEqMatcher(rhs, false); } // Creates a matcher that matches any double argument approximately // equal to rhs, including NaN values when rhs is NaN. inline internal::FloatingEqMatcher NanSensitiveDoubleEq(double rhs) { return internal::FloatingEqMatcher(rhs, true); } // Creates a matcher that matches any float argument approximately // equal to rhs, where two NANs are considered unequal. inline internal::FloatingEqMatcher FloatEq(float rhs) { return internal::FloatingEqMatcher(rhs, false); } // Creates a matcher that matches any double argument approximately // equal to rhs, including NaN values when rhs is NaN. inline internal::FloatingEqMatcher NanSensitiveFloatEq(float rhs) { return internal::FloatingEqMatcher(rhs, true); } // Creates a matcher that matches a pointer (raw or smart) that points // to a value that matches inner_matcher. template inline internal::PointeeMatcher Pointee( const InnerMatcher& inner_matcher) { return internal::PointeeMatcher(inner_matcher); } // Creates a matcher that matches an object whose given field matches // 'matcher'. For example, // Field(&Foo::number, Ge(5)) // matches a Foo object x iff x.number >= 5. template inline PolymorphicMatcher< internal::FieldMatcher > Field( FieldType Class::*field, const FieldMatcher& matcher) { return MakePolymorphicMatcher( internal::FieldMatcher( field, MatcherCast(matcher))); // The call to MatcherCast() is required for supporting inner // matchers of compatible types. For example, it allows // Field(&Foo::bar, m) // to compile where bar is an int32 and m is a matcher for int64. } // Creates a matcher that matches an object whose given property // matches 'matcher'. For example, // Property(&Foo::str, StartsWith("hi")) // matches a Foo object x iff x.str() starts with "hi". template inline PolymorphicMatcher< internal::PropertyMatcher > Property( PropertyType (Class::*property)() const, const PropertyMatcher& matcher) { return MakePolymorphicMatcher( internal::PropertyMatcher( property, MatcherCast(matcher))); // The call to MatcherCast() is required for supporting inner // matchers of compatible types. For example, it allows // Property(&Foo::bar, m) // to compile where bar() returns an int32 and m is a matcher for int64. } // Creates a matcher that matches an object iff the result of applying // a callable to x matches 'matcher'. // For example, // ResultOf(f, StartsWith("hi")) // matches a Foo object x iff f(x) starts with "hi". // callable parameter can be a function, function pointer, or a functor. // Callable has to satisfy the following conditions: // * It is required to keep no state affecting the results of // the calls on it and make no assumptions about how many calls // will be made. Any state it keeps must be protected from the // concurrent access. // * If it is a function object, it has to define type result_type. // We recommend deriving your functor classes from std::unary_function. template internal::ResultOfMatcher ResultOf( Callable callable, const ResultOfMatcher& matcher) { return internal::ResultOfMatcher( callable, MatcherCast::ResultType>( matcher)); // The call to MatcherCast() is required for supporting inner // matchers of compatible types. For example, it allows // ResultOf(Function, m) // to compile where Function() returns an int32 and m is a matcher for int64. } // String matchers. // Matches a string equal to str. inline PolymorphicMatcher > StrEq(const internal::string& str) { return MakePolymorphicMatcher(internal::StrEqualityMatcher( str, true, true)); } // Matches a string not equal to str. inline PolymorphicMatcher > StrNe(const internal::string& str) { return MakePolymorphicMatcher(internal::StrEqualityMatcher( str, false, true)); } // Matches a string equal to str, ignoring case. inline PolymorphicMatcher > StrCaseEq(const internal::string& str) { return MakePolymorphicMatcher(internal::StrEqualityMatcher( str, true, false)); } // Matches a string not equal to str, ignoring case. inline PolymorphicMatcher > StrCaseNe(const internal::string& str) { return MakePolymorphicMatcher(internal::StrEqualityMatcher( str, false, false)); } // Creates a matcher that matches any string, std::string, or C string // that contains the given substring. inline PolymorphicMatcher > HasSubstr(const internal::string& substring) { return MakePolymorphicMatcher(internal::HasSubstrMatcher( substring)); } // Matches a string that starts with 'prefix' (case-sensitive). inline PolymorphicMatcher > StartsWith(const internal::string& prefix) { return MakePolymorphicMatcher(internal::StartsWithMatcher( prefix)); } // Matches a string that ends with 'suffix' (case-sensitive). inline PolymorphicMatcher > EndsWith(const internal::string& suffix) { return MakePolymorphicMatcher(internal::EndsWithMatcher( suffix)); } #ifdef GMOCK_HAS_REGEX // Matches a string that fully matches regular expression 'regex'. // The matcher takes ownership of 'regex'. inline PolymorphicMatcher MatchesRegex( const internal::RE* regex) { return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, true)); } inline PolymorphicMatcher MatchesRegex( const internal::string& regex) { return MatchesRegex(new internal::RE(regex)); } // Matches a string that contains regular expression 'regex'. // The matcher takes ownership of 'regex'. inline PolymorphicMatcher ContainsRegex( const internal::RE* regex) { return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, false)); } inline PolymorphicMatcher ContainsRegex( const internal::string& regex) { return ContainsRegex(new internal::RE(regex)); } #endif // GMOCK_HAS_REGEX #if GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING // Wide string matchers. // Matches a string equal to str. inline PolymorphicMatcher > StrEq(const internal::wstring& str) { return MakePolymorphicMatcher(internal::StrEqualityMatcher( str, true, true)); } // Matches a string not equal to str. inline PolymorphicMatcher > StrNe(const internal::wstring& str) { return MakePolymorphicMatcher(internal::StrEqualityMatcher( str, false, true)); } // Matches a string equal to str, ignoring case. inline PolymorphicMatcher > StrCaseEq(const internal::wstring& str) { return MakePolymorphicMatcher(internal::StrEqualityMatcher( str, true, false)); } // Matches a string not equal to str, ignoring case. inline PolymorphicMatcher > StrCaseNe(const internal::wstring& str) { return MakePolymorphicMatcher(internal::StrEqualityMatcher( str, false, false)); } // Creates a matcher that matches any wstring, std::wstring, or C wide string // that contains the given substring. inline PolymorphicMatcher > HasSubstr(const internal::wstring& substring) { return MakePolymorphicMatcher(internal::HasSubstrMatcher( substring)); } // Matches a string that starts with 'prefix' (case-sensitive). inline PolymorphicMatcher > StartsWith(const internal::wstring& prefix) { return MakePolymorphicMatcher(internal::StartsWithMatcher( prefix)); } // Matches a string that ends with 'suffix' (case-sensitive). inline PolymorphicMatcher > EndsWith(const internal::wstring& suffix) { return MakePolymorphicMatcher(internal::EndsWithMatcher( suffix)); } #endif // GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING // Creates a polymorphic matcher that matches a 2-tuple where the // first field == the second field. inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); } // Creates a polymorphic matcher that matches a 2-tuple where the // first field >= the second field. inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); } // Creates a polymorphic matcher that matches a 2-tuple where the // first field > the second field. inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); } // Creates a polymorphic matcher that matches a 2-tuple where the // first field <= the second field. inline internal::Le2Matcher Le() { return internal::Le2Matcher(); } // Creates a polymorphic matcher that matches a 2-tuple where the // first field < the second field. inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); } // Creates a polymorphic matcher that matches a 2-tuple where the // first field != the second field. inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); } // Creates a matcher that matches any value of type T that m doesn't // match. template inline internal::NotMatcher Not(InnerMatcher m) { return internal::NotMatcher(m); } // Creates a matcher that matches any value that matches all of the // given matchers. // // For now we only support up to 5 matchers. Support for more // matchers can be added as needed, or the user can use nested // AllOf()s. template inline internal::BothOfMatcher AllOf(Matcher1 m1, Matcher2 m2) { return internal::BothOfMatcher(m1, m2); } template inline internal::BothOfMatcher > AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3) { return AllOf(m1, AllOf(m2, m3)); } template inline internal::BothOfMatcher > > AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4) { return AllOf(m1, AllOf(m2, m3, m4)); } template inline internal::BothOfMatcher > > > AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5) { return AllOf(m1, AllOf(m2, m3, m4, m5)); } // Creates a matcher that matches any value that matches at least one // of the given matchers. // // For now we only support up to 5 matchers. Support for more // matchers can be added as needed, or the user can use nested // AnyOf()s. template inline internal::EitherOfMatcher AnyOf(Matcher1 m1, Matcher2 m2) { return internal::EitherOfMatcher(m1, m2); } template inline internal::EitherOfMatcher > AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3) { return AnyOf(m1, AnyOf(m2, m3)); } template inline internal::EitherOfMatcher > > AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4) { return AnyOf(m1, AnyOf(m2, m3, m4)); } template inline internal::EitherOfMatcher > > > AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5) { return AnyOf(m1, AnyOf(m2, m3, m4, m5)); } // Returns a matcher that matches anything that satisfies the given // predicate. The predicate can be any unary function or functor // whose return type can be implicitly converted to bool. template inline PolymorphicMatcher > Truly(Predicate pred) { return MakePolymorphicMatcher(internal::TrulyMatcher(pred)); } // Returns a predicate that is satisfied by anything that matches the // given matcher. template inline internal::MatcherAsPredicate Matches(M matcher) { return internal::MatcherAsPredicate(matcher); } // These macros allow using matchers to check values in Google Test // tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher) // succeed iff the value matches the matcher. If the assertion fails, // the value and the description of the matcher will be printed. #define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\ ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) #define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\ ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) } // namespace testing #endif // GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_