$$ -*- mode: c++; -*- $$ This is a Pump source file. Please use Pump to convert it to $$ gmock-generated-variadic-actions.h. $$ $var n = 10 $$ The maximum arity we support. // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file implements some commonly used variadic actions. #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_ #include #include namespace testing { namespace internal { // InvokeHelper knows how to unpack an N-tuple and invoke an N-ary // function or method with the unpacked values, where F is a function // type that takes N arguments. template class InvokeHelper; $range i 0..n $for i [[ $range j 1..i $var types = [[$for j [[, typename A$j]]]] $var as = [[$for j, [[A$j]]]] $var args = [[$if i==0 [[]] $else [[ args]]]] $var import = [[$if i==0 [[]] $else [[ using ::std::tr1::get; ]]]] $var gets = [[$for j, [[get<$(j - 1)>(args)]]]] template class InvokeHelper > { public: template static R Invoke(Function function, const ::std::tr1::tuple<$as>&$args) { $import return function($gets); } template static R InvokeMethod(Class* obj_ptr, MethodPtr method_ptr, const ::std::tr1::tuple<$as>&$args) { $import return (obj_ptr->*method_ptr)($gets); } }; ]] // Implements the Invoke(f) action. The template argument // FunctionImpl is the implementation type of f, which can be either a // function pointer or a functor. Invoke(f) can be used as an // Action as long as f's type is compatible with F (i.e. f can be // assigned to a tr1::function). template class InvokeAction { public: // The c'tor makes a copy of function_impl (either a function // pointer or a functor). explicit InvokeAction(FunctionImpl function_impl) : function_impl_(function_impl) {} template Result Perform(const ArgumentTuple& args) { return InvokeHelper::Invoke(function_impl_, args); } private: FunctionImpl function_impl_; }; // Implements the Invoke(object_ptr, &Class::Method) action. template class InvokeMethodAction { public: InvokeMethodAction(Class* obj_ptr, MethodPtr method_ptr) : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {} template Result Perform(const ArgumentTuple& args) const { return InvokeHelper::InvokeMethod( obj_ptr_, method_ptr_, args); } private: Class* const obj_ptr_; const MethodPtr method_ptr_; }; // A ReferenceWrapper object represents a reference to type T, // which can be either const or not. It can be explicitly converted // from, and implicitly converted to, a T&. Unlike a reference, // ReferenceWrapper can be copied and can survive template type // inference. This is used to support by-reference arguments in the // InvokeArgument(...) action. The idea was from "reference // wrappers" in tr1, which we don't have in our source tree yet. template class ReferenceWrapper { public: // Constructs a ReferenceWrapper object from a T&. explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {} // NOLINT // Allows a ReferenceWrapper object to be implicitly converted to // a T&. operator T&() const { return *pointer_; } private: T* pointer_; }; // CallableHelper has static methods for invoking "callables", // i.e. function pointers and functors. It uses overloading to // provide a uniform interface for invoking different kinds of // callables. In particular, you can use: // // CallableHelper::Call(callable, a1, a2, ..., an) // // to invoke an n-ary callable, where R is its return type. If an // argument, say a2, needs to be passed by reference, you should write // ByRef(a2) instead of a2 in the above expression. template class CallableHelper { public: // Calls a nullary callable. template static R Call(Function function) { return function(); } // Calls a unary callable. // We deliberately pass a1 by value instead of const reference here // in case it is a C-string literal. If we had declared the // parameter as 'const A1& a1' and write Call(function, "Hi"), the // compiler would've thought A1 is 'char[3]', which causes trouble // when you need to copy a value of type A1. By declaring the // parameter as 'A1 a1', the compiler will correctly infer that A1 // is 'const char*' when it sees Call(function, "Hi"). // // Since this function is defined inline, the compiler can get rid // of the copying of the arguments. Therefore the performance won't // be hurt. template static R Call(Function function, A1 a1) { return function(a1); } $range i 2..n $for i [[ $var arity = [[$if i==2 [[binary]] $elif i==3 [[ternary]] $else [[$i-ary]]]] // Calls a $arity callable. $range j 1..i $var typename_As = [[$for j, [[typename A$j]]]] $var Aas = [[$for j, [[A$j a$j]]]] $var as = [[$for j, [[a$j]]]] $var typename_Ts = [[$for j, [[typename T$j]]]] $var Ts = [[$for j, [[T$j]]]] template static R Call(Function function, $Aas) { return function($as); } ]] }; // class CallableHelper // Invokes a nullary callable argument. template class InvokeArgumentAction0 { public: template static Result Perform(const ArgumentTuple& args) { return CallableHelper::Call(::std::tr1::get(args)); } }; // Invokes a unary callable argument with the given argument. template class InvokeArgumentAction1 { public: // We deliberately pass a1 by value instead of const reference here // in case it is a C-string literal. // // Since this function is defined inline, the compiler can get rid // of the copying of the arguments. Therefore the performance won't // be hurt. explicit InvokeArgumentAction1(A1 a1) : arg1_(a1) {} template Result Perform(const ArgumentTuple& args) { return CallableHelper::Call(::std::tr1::get(args), arg1_); } private: const A1 arg1_; }; $range i 2..n $for i [[ $var arity = [[$if i==2 [[binary]] $elif i==3 [[ternary]] $else [[$i-ary]]]] $range j 1..i $var typename_As = [[$for j, [[typename A$j]]]] $var args_ = [[$for j, [[arg$j[[]]_]]]] // Invokes a $arity callable argument with the given arguments. template class InvokeArgumentAction$i { public: InvokeArgumentAction$i($for j, [[A$j a$j]]) : $for j, [[arg$j[[]]_(a$j)]] {} template Result Perform(const ArgumentTuple& args) { $if i <= 4 [[ return CallableHelper::Call(::std::tr1::get(args), $args_); ]] $else [[ // We extract the callable to a variable before invoking it, in // case it is a functor passed by value and its operator() is not // const. typename ::std::tr1::tuple_element::type function = ::std::tr1::get(args); return function($args_); ]] } private: $for j [[ const A$j arg$j[[]]_; ]] }; ]] // An INTERNAL macro for extracting the type of a tuple field. It's // subject to change without notice - DO NOT USE IN USER CODE! #define GMOCK_FIELD_(Tuple, N) \ typename ::std::tr1::tuple_element::type $range i 1..n // SelectArgs::type is the // type of an n-ary function whose i-th (1-based) argument type is the // k{i}-th (0-based) field of ArgumentTuple, which must be a tuple // type, and whose return type is Result. For example, // SelectArgs, 0, 3>::type // is int(bool, long). // // SelectArgs::Select(args) // returns the selected fields (k1, k2, ..., k_n) of args as a tuple. // For example, // SelectArgs, 2, 0>::Select( // ::std::tr1::make_tuple(true, 'a', 2.5)) // returns ::std::tr1::tuple (2.5, true). // // The numbers in list k1, k2, ..., k_n must be >= 0, where n can be // in the range [0, $n]. Duplicates are allowed and they don't have // to be in an ascending or descending order. template class SelectArgs { public: typedef Result type($for i, [[GMOCK_FIELD_(ArgumentTuple, k$i)]]); typedef typename Function::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& args) { using ::std::tr1::get; return SelectedArgs($for i, [[get(args)]]); } }; $for i [[ $range j 1..n $range j1 1..i-1 template class SelectArgs { public: typedef Result type($for j1, [[GMOCK_FIELD_(ArgumentTuple, k$j1)]]); typedef typename Function::ArgumentTuple SelectedArgs; static SelectedArgs Select(const ArgumentTuple& [[]] $if i == 1 [[/* args */]] $else [[args]]) { using ::std::tr1::get; return SelectedArgs($for j1, [[get(args)]]); } }; ]] #undef GMOCK_FIELD_ $var ks = [[$for i, [[k$i]]]] // Implements the WithArgs action. template class WithArgsAction { public: explicit WithArgsAction(const InnerAction& action) : action_(action) {} template operator Action() const { return MakeAction(new Impl(action_)); } private: template class Impl : public ActionInterface { public: typedef typename Function::Result Result; typedef typename Function::ArgumentTuple ArgumentTuple; explicit Impl(const InnerAction& action) : action_(action) {} virtual Result Perform(const ArgumentTuple& args) { return action_.Perform(SelectArgs::Select(args)); } private: typedef typename SelectArgs::type InnerFunctionType; Action action_; }; const InnerAction action_; }; // Does two actions sequentially. Used for implementing the DoAll(a1, // a2, ...) action. template class DoBothAction { public: DoBothAction(Action1 action1, Action2 action2) : action1_(action1), action2_(action2) {} // This template type conversion operator allows DoAll(a1, ..., a_n) // to be used in ANY function of compatible type. template operator Action() const { return Action(new Impl(action1_, action2_)); } private: // Implements the DoAll(...) action for a particular function type F. template class Impl : public ActionInterface { public: typedef typename Function::Result Result; typedef typename Function::ArgumentTuple ArgumentTuple; typedef typename Function::MakeResultVoid VoidResult; Impl(const Action& action1, const Action& action2) : action1_(action1), action2_(action2) {} virtual Result Perform(const ArgumentTuple& args) { action1_.Perform(args); return action2_.Perform(args); } private: const Action action1_; const Action action2_; }; Action1 action1_; Action2 action2_; }; // A macro from the ACTION* family (defined later in this file) // defines an action that can be used in a mock function. Typically, // these actions only care about a subset of the arguments of the mock // function. For example, if such an action only uses the second // argument, it can be used in any mock function that takes >= 2 // arguments where the type of the second argument is compatible. // // Therefore, the action implementation must be prepared to take more // arguments than it needs. The ExcessiveArg type is used to // represent those excessive arguments. In order to keep the compiler // error messages tractable, we define it in the testing namespace // instead of testing::internal. However, this is an INTERNAL TYPE // and subject to change without notice, so a user MUST NOT USE THIS // TYPE DIRECTLY. struct ExcessiveArg {}; // A helper class needed for implementing the ACTION* macros. template class ActionHelper { public: $range i 0..n $for i [[ $var template = [[$if i==0 [[]] $else [[ $range j 0..i-1 template <$for j, [[typename A$j]]> ]]]] $range j 0..i-1 $var As = [[$for j, [[A$j]]]] $var as = [[$for j, [[get<$j>(args)]]]] $range k 1..n-i $var eas = [[$for k, [[ExcessiveArg()]]]] $var arg_list = [[$if (i==0) | (i==n) [[$as$eas]] $else [[$as, $eas]]]] $template static Result Perform(Impl* impl, const ::std::tr1::tuple<$As>& args) { using ::std::tr1::get; return impl->template gmock_PerformImpl<$As>(args, $arg_list); } ]] }; } // namespace internal // Various overloads for Invoke(). // Creates an action that invokes 'function_impl' with the mock // function's arguments. template PolymorphicAction > Invoke( FunctionImpl function_impl) { return MakePolymorphicAction( internal::InvokeAction(function_impl)); } // Creates an action that invokes the given method on the given object // with the mock function's arguments. template PolymorphicAction > Invoke( Class* obj_ptr, MethodPtr method_ptr) { return MakePolymorphicAction( internal::InvokeMethodAction(obj_ptr, method_ptr)); } // Creates a reference wrapper for the given L-value. If necessary, // you can explicitly specify the type of the reference. For example, // suppose 'derived' is an object of type Derived, ByRef(derived) // would wrap a Derived&. If you want to wrap a const Base& instead, // where Base is a base class of Derived, just write: // // ByRef(derived) template inline internal::ReferenceWrapper ByRef(T& l_value) { // NOLINT return internal::ReferenceWrapper(l_value); } // Various overloads for InvokeArgument(). // // The InvokeArgument(a1, a2, ..., a_k) action invokes the N-th // (0-based) argument, which must be a k-ary callable, of the mock // function, with arguments a1, a2, ..., a_k. // // Notes: // // 1. The arguments are passed by value by default. If you need to // pass an argument by reference, wrap it inside ByRef(). For // example, // // InvokeArgument<1>(5, string("Hello"), ByRef(foo)) // // passes 5 and string("Hello") by value, and passes foo by // reference. // // 2. If the callable takes an argument by reference but ByRef() is // not used, it will receive the reference to a copy of the value, // instead of the original value. For example, when the 0-th // argument of the mock function takes a const string&, the action // // InvokeArgument<0>(string("Hello")) // // makes a copy of the temporary string("Hello") object and passes a // reference of the copy, instead of the original temporary object, // to the callable. This makes it easy for a user to define an // InvokeArgument action from temporary values and have it performed // later. template inline PolymorphicAction > InvokeArgument() { return MakePolymorphicAction(internal::InvokeArgumentAction0()); } // We deliberately pass a1 by value instead of const reference here in // case it is a C-string literal. If we had declared the parameter as // 'const A1& a1' and write InvokeArgument<0>("Hi"), the compiler // would've thought A1 is 'char[3]', which causes trouble as the // implementation needs to copy a value of type A1. By declaring the // parameter as 'A1 a1', the compiler will correctly infer that A1 is // 'const char*' when it sees InvokeArgument<0>("Hi"). // // Since this function is defined inline, the compiler can get rid of // the copying of the arguments. Therefore the performance won't be // hurt. template inline PolymorphicAction > InvokeArgument(A1 a1) { return MakePolymorphicAction(internal::InvokeArgumentAction1(a1)); } $range i 2..n $for i [[ $range j 1..i $var typename_As = [[$for j, [[typename A$j]]]] $var As = [[$for j, [[A$j]]]] $var Aas = [[$for j, [[A$j a$j]]]] $var as = [[$for j, [[a$j]]]] template inline PolymorphicAction > InvokeArgument($Aas) { return MakePolymorphicAction( internal::InvokeArgumentAction$i($as)); } ]] // WithoutArgs(inner_action) can be used in a mock function with a // non-empty argument list to perform inner_action, which takes no // argument. In other words, it adapts an action accepting no // argument to one that accepts (and ignores) arguments. template inline internal::WithArgsAction WithoutArgs(const InnerAction& action) { return internal::WithArgsAction(action); } // WithArg(an_action) creates an action that passes the k-th // (0-based) argument of the mock function to an_action and performs // it. It adapts an action accepting one argument to one that accepts // multiple arguments. For convenience, we also provide // WithArgs(an_action) (defined below) as a synonym. template inline internal::WithArgsAction WithArg(const InnerAction& action) { return internal::WithArgsAction(action); } // WithArgs(an_action) creates an action that passes // the selected arguments of the mock function to an_action and // performs it. It serves as an adaptor between actions with // different argument lists. C++ doesn't support default arguments for // function templates, so we have to overload it. $range i 1..n $for i [[ $range j 1..i template <$for j [[int k$j, ]]typename InnerAction> inline internal::WithArgsAction WithArgs(const InnerAction& action) { return internal::WithArgsAction(action); } ]] // Creates an action that does actions a1, a2, ..., sequentially in // each invocation. $range i 2..n $for i [[ $range j 2..i $var types = [[$for j, [[typename Action$j]]]] $var Aas = [[$for j [[, Action$j a$j]]]] template $range k 1..i-1 inline $for k [[internal::DoBothAction]] DoAll(Action1 a1$Aas) { $if i==2 [[ return internal::DoBothAction(a1, a2); ]] $else [[ $range j2 2..i return DoAll(a1, DoAll($for j2, [[a$j2]])); ]] } ]] } // namespace testing // The ACTION* family of macros can be used in a namespace scope to // define custom actions easily. The syntax: // // ACTION(name) { statements; } // // will define an action with the given name that executes the // statements. The value returned by the statements will be used as // the return value of the action. Inside the statements, you can // refer to the K-th (0-based) argument of the mock function by // 'argK', and refer to its type by 'argK_type'. For example: // // ACTION(IncrementArg1) { // arg1_type temp = arg1; // return ++(*temp); // } // // allows you to write // // ...WillOnce(IncrementArg1()); // // You can also refer to the entire argument tuple and its type by // 'args' and 'args_type', and refer to the mock function type and its // return type by 'function_type' and 'return_type'. // // Note that you don't need to specify the types of the mock function // arguments. However rest assured that your code is still type-safe: // you'll get a compiler error if *arg1 doesn't support the ++ // operator, or if the type of ++(*arg1) isn't compatible with the // mock function's return type, for example. // // Sometimes you'll want to parameterize the action. For that you can use // another macro: // // ACTION_P(name, param_name) { statements; } // // For example: // // ACTION_P(Add, n) { return arg0 + n; } // // will allow you to write: // // ...WillOnce(Add(5)); // // Note that you don't need to provide the type of the parameter // either. If you need to reference the type of a parameter named // 'foo', you can write 'foo_type'. For example, in the body of // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type // of 'n'. // // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P$n to support // multi-parameter actions. // // For the purpose of typing, you can view // // ACTION_Pk(Foo, p1, ..., pk) { ... } // // as shorthand for // // template // FooActionPk Foo(p1_type p1, ..., pk_type pk) { ... } // // In particular, you can provide the template type arguments // explicitly when invoking Foo(), as in Foo(5, false); // although usually you can rely on the compiler to infer the types // for you automatically. You can assign the result of expression // Foo(p1, ..., pk) to a variable of type FooActionPk. This can be useful when composing actions. // // You can also overload actions with different numbers of parameters: // // ACTION_P(Plus, a) { ... } // ACTION_P2(Plus, a, b) { ... } // // While it's tempting to always use the ACTION* macros when defining // a new action, you should also consider implementing ActionInterface // or using MakePolymorphicAction() instead, especially if you need to // use the action a lot. While these approaches require more work, // they give you more control on the types of the mock function // arguments and the action parameters, which in general leads to // better compiler error messages that pay off in the long run. They // also allow overloading actions based on parameter types (as opposed // to just based on the number of parameters). // // CAVEAT: // // ACTION*() can only be used in a namespace scope. The reason is // that C++ doesn't yet allow function-local types to be used to // instantiate templates. The up-coming C++0x standard will fix this. // Once that's done, we'll consider supporting using ACTION*() inside // a function. // // MORE INFORMATION: // // To learn more about using these macros, please search for 'ACTION' // on http://code.google.com/p/googlemock/wiki/CookBook. $range i 0..n $for i [[ $var template = [[$if i==0 [[]] $else [[ $range j 0..i-1 template <$for j, [[typename p$j##_type]]>\ ]]]] $var class_name = [[name##Action[[$if i==0 [[]] $elif i==1 [[P]] $else [[P$i]]]]]] $range j 0..i-1 $var ctor_param_list = [[$for j, [[p$j##_type gmock_p$j]]]] $var param_types_and_names = [[$for j, [[p$j##_type p$j]]]] $var inits = [[$if i==0 [[]] $else [[ : $for j, [[p$j(gmock_p$j)]]]]]] $var param_field_decls = [[$for j [[ p$j##_type p$j;\ ]]]] $var param_field_decls2 = [[$for j [[ p$j##_type p$j;\ ]]]] $var params = [[$for j, [[p$j]]]] $var param_types = [[$if i==0 [[]] $else [[<$for j, [[p$j##_type]]>]]]] $range k 0..n-1 $var typename_arg_types = [[$for k, [[typename arg$k[[]]_type]]]] $var arg_types_and_names = [[$for k, [[arg$k[[]]_type arg$k]]]] $var macro_name = [[$if i==0 [[ACTION]] $elif i==1 [[ACTION_P]] $else [[ACTION_P$i]]]] #define $macro_name(name$for j [[, p$j]])\$template class $class_name {\ public:\ $class_name($ctor_param_list)$inits {}\ template \ class gmock_Impl : public ::testing::ActionInterface {\ public:\ typedef F function_type;\ typedef typename ::testing::internal::Function::Result return_type;\ typedef typename ::testing::internal::Function::ArgumentTuple\ args_type;\ [[$if i==1 [[explicit ]]]]gmock_Impl($ctor_param_list)$inits {}\ virtual return_type Perform(const args_type& args) {\ return ::testing::internal::ActionHelper::\ Perform(this, args);\ }\ template <$typename_arg_types>\ return_type gmock_PerformImpl(const args_type& args, [[]] $arg_types_and_names) const;\$param_field_decls };\ template operator ::testing::Action() const {\ return ::testing::Action(new gmock_Impl($params));\ }\$param_field_decls2 };\$template inline $class_name$param_types name($param_types_and_names) {\ return $class_name$param_types($params);\ }\$template template \ template <$typename_arg_types>\ typename ::testing::internal::Function::Result\ $class_name$param_types::\ gmock_Impl::gmock_PerformImpl(const args_type& args, [[]] $arg_types_and_names) const ]] $$ } // This meta comment fixes auto-indentation in Emacs. It won't $$ // show up in the generated code. // TODO(wan@google.com): move the following to a different .h file // such that we don't have to run 'pump' every time the code is // updated. namespace testing { namespace internal { // Saves argument #0 to where the pointer points. ACTION_P(SaveArg0, pointer) { *pointer = arg0; } // Assigns 'value' to the variable referenced by argument #0. ACTION_P(SetArg0Referee, value) { // Ensures that argument #0 is a reference. If you get a compiler // error on the next line, you are using SetArgReferee(value) in // a mock function whose k-th (0-based) argument is not a reference. GMOCK_COMPILE_ASSERT_(internal::is_reference::value, SetArgReferee_must_be_used_with_a_reference_argument); arg0 = value; } } // namespace internal // Action SaveArg(pointer) saves the k-th (0-based) argument of the // mock function to *pointer. template inline internal::WithArgsAction, k> SaveArg(const Pointer& pointer) { return WithArg(internal::SaveArg0(pointer)); } // Action SetArgReferee(value) assigns 'value' to the variable // referenced by the k-th (0-based) argument of the mock function. template inline internal::WithArgsAction, k> SetArgReferee(const Value& value) { return WithArg(internal::SetArg0Referee(value)); } // Action Throw(exception) can be used in a mock function of any type // to throw the given exception. Any copyable value can be thrown. #if GTEST_HAS_EXCEPTIONS ACTION_P(Throw, exception) { throw exception; } #endif // GTEST_HAS_EXCEPTIONS } // namespace testing #endif // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_