755f853c6b
Avoid temporary matcher instances. They are unnecessary and can be relatively more expensive than the rest of the algorithm. PiperOrigin-RevId: 277084853
4593 lines
163 KiB
C++
4593 lines
163 KiB
C++
// Copyright 2007, Google Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
// Google Mock - a framework for writing C++ mock classes.
|
|
//
|
|
// This file implements some commonly used argument matchers. More
|
|
// matchers can be defined by the user implementing the
|
|
// MatcherInterface<T> interface if necessary.
|
|
//
|
|
// See googletest/include/gtest/gtest-matchers.h for the definition of class
|
|
// Matcher, class MatcherInterface, and others.
|
|
|
|
// GOOGLETEST_CM0002 DO NOT DELETE
|
|
|
|
#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
|
|
#define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <initializer_list>
|
|
#include <iterator>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <ostream> // NOLINT
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "gmock/internal/gmock-internal-utils.h"
|
|
#include "gmock/internal/gmock-port.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
// MSVC warning C5046 is new as of VS2017 version 15.8.
|
|
#if defined(_MSC_VER) && _MSC_VER >= 1915
|
|
#define GMOCK_MAYBE_5046_ 5046
|
|
#else
|
|
#define GMOCK_MAYBE_5046_
|
|
#endif
|
|
|
|
GTEST_DISABLE_MSC_WARNINGS_PUSH_(
|
|
4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by
|
|
clients of class B */
|
|
/* Symbol involving type with internal linkage not defined */)
|
|
|
|
namespace testing {
|
|
|
|
// To implement a matcher Foo for type T, define:
|
|
// 1. a class FooMatcherImpl that implements the
|
|
// MatcherInterface<T> interface, and
|
|
// 2. a factory function that creates a Matcher<T> object from a
|
|
// FooMatcherImpl*.
|
|
//
|
|
// The two-level delegation design makes it possible to allow a user
|
|
// to write "v" instead of "Eq(v)" where a Matcher is expected, which
|
|
// is impossible if we pass matchers by pointers. It also eases
|
|
// ownership management as Matcher objects can now be copied like
|
|
// plain values.
|
|
|
|
// A match result listener that stores the explanation in a string.
|
|
class StringMatchResultListener : public MatchResultListener {
|
|
public:
|
|
StringMatchResultListener() : MatchResultListener(&ss_) {}
|
|
|
|
// Returns the explanation accumulated so far.
|
|
std::string str() const { return ss_.str(); }
|
|
|
|
// Clears the explanation accumulated so far.
|
|
void Clear() { ss_.str(""); }
|
|
|
|
private:
|
|
::std::stringstream ss_;
|
|
|
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener);
|
|
};
|
|
|
|
// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
|
|
// and MUST NOT BE USED IN USER CODE!!!
|
|
namespace internal {
|
|
|
|
// The MatcherCastImpl class template is a helper for implementing
|
|
// MatcherCast(). We need this helper in order to partially
|
|
// specialize the implementation of MatcherCast() (C++ allows
|
|
// class/struct templates to be partially specialized, but not
|
|
// function templates.).
|
|
|
|
// This general version is used when MatcherCast()'s argument is a
|
|
// polymorphic matcher (i.e. something that can be converted to a
|
|
// Matcher but is not one yet; for example, Eq(value)) or a value (for
|
|
// example, "hello").
|
|
template <typename T, typename M>
|
|
class MatcherCastImpl {
|
|
public:
|
|
static Matcher<T> Cast(const M& polymorphic_matcher_or_value) {
|
|
// M can be a polymorphic matcher, in which case we want to use
|
|
// its conversion operator to create Matcher<T>. Or it can be a value
|
|
// that should be passed to the Matcher<T>'s constructor.
|
|
//
|
|
// We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a
|
|
// polymorphic matcher because it'll be ambiguous if T has an implicit
|
|
// constructor from M (this usually happens when T has an implicit
|
|
// constructor from any type).
|
|
//
|
|
// It won't work to unconditionally implict_cast
|
|
// polymorphic_matcher_or_value to Matcher<T> because it won't trigger
|
|
// a user-defined conversion from M to T if one exists (assuming M is
|
|
// a value).
|
|
return CastImpl(polymorphic_matcher_or_value,
|
|
std::is_convertible<M, Matcher<T>>{},
|
|
std::is_convertible<M, T>{});
|
|
}
|
|
|
|
private:
|
|
template <bool Ignore>
|
|
static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value,
|
|
std::true_type /* convertible_to_matcher */,
|
|
std::integral_constant<bool, Ignore>) {
|
|
// M is implicitly convertible to Matcher<T>, which means that either
|
|
// M is a polymorphic matcher or Matcher<T> has an implicit constructor
|
|
// from M. In both cases using the implicit conversion will produce a
|
|
// matcher.
|
|
//
|
|
// Even if T has an implicit constructor from M, it won't be called because
|
|
// creating Matcher<T> would require a chain of two user-defined conversions
|
|
// (first to create T from M and then to create Matcher<T> from T).
|
|
return polymorphic_matcher_or_value;
|
|
}
|
|
|
|
// M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic
|
|
// matcher. It's a value of a type implicitly convertible to T. Use direct
|
|
// initialization to create a matcher.
|
|
static Matcher<T> CastImpl(const M& value,
|
|
std::false_type /* convertible_to_matcher */,
|
|
std::true_type /* convertible_to_T */) {
|
|
return Matcher<T>(ImplicitCast_<T>(value));
|
|
}
|
|
|
|
// M can't be implicitly converted to either Matcher<T> or T. Attempt to use
|
|
// polymorphic matcher Eq(value) in this case.
|
|
//
|
|
// Note that we first attempt to perform an implicit cast on the value and
|
|
// only fall back to the polymorphic Eq() matcher afterwards because the
|
|
// latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end
|
|
// which might be undefined even when Rhs is implicitly convertible to Lhs
|
|
// (e.g. std::pair<const int, int> vs. std::pair<int, int>).
|
|
//
|
|
// We don't define this method inline as we need the declaration of Eq().
|
|
static Matcher<T> CastImpl(const M& value,
|
|
std::false_type /* convertible_to_matcher */,
|
|
std::false_type /* convertible_to_T */);
|
|
};
|
|
|
|
// This more specialized version is used when MatcherCast()'s argument
|
|
// is already a Matcher. This only compiles when type T can be
|
|
// statically converted to type U.
|
|
template <typename T, typename U>
|
|
class MatcherCastImpl<T, Matcher<U> > {
|
|
public:
|
|
static Matcher<T> Cast(const Matcher<U>& source_matcher) {
|
|
return Matcher<T>(new Impl(source_matcher));
|
|
}
|
|
|
|
private:
|
|
class Impl : public MatcherInterface<T> {
|
|
public:
|
|
explicit Impl(const Matcher<U>& source_matcher)
|
|
: source_matcher_(source_matcher) {}
|
|
|
|
// We delegate the matching logic to the source matcher.
|
|
bool MatchAndExplain(T x, MatchResultListener* listener) const override {
|
|
using FromType = typename std::remove_cv<typename std::remove_pointer<
|
|
typename std::remove_reference<T>::type>::type>::type;
|
|
using ToType = typename std::remove_cv<typename std::remove_pointer<
|
|
typename std::remove_reference<U>::type>::type>::type;
|
|
// Do not allow implicitly converting base*/& to derived*/&.
|
|
static_assert(
|
|
// Do not trigger if only one of them is a pointer. That implies a
|
|
// regular conversion and not a down_cast.
|
|
(std::is_pointer<typename std::remove_reference<T>::type>::value !=
|
|
std::is_pointer<typename std::remove_reference<U>::type>::value) ||
|
|
std::is_same<FromType, ToType>::value ||
|
|
!std::is_base_of<FromType, ToType>::value,
|
|
"Can't implicitly convert from <base> to <derived>");
|
|
|
|
return source_matcher_.MatchAndExplain(static_cast<U>(x), listener);
|
|
}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
source_matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
source_matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
private:
|
|
const Matcher<U> source_matcher_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(Impl);
|
|
};
|
|
};
|
|
|
|
// This even more specialized version is used for efficiently casting
|
|
// a matcher to its own type.
|
|
template <typename T>
|
|
class MatcherCastImpl<T, Matcher<T> > {
|
|
public:
|
|
static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
|
|
};
|
|
|
|
} // namespace internal
|
|
|
|
// In order to be safe and clear, casting between different matcher
|
|
// types is done explicitly via MatcherCast<T>(m), which takes a
|
|
// matcher m and returns a Matcher<T>. It compiles only when T can be
|
|
// statically converted to the argument type of m.
|
|
template <typename T, typename M>
|
|
inline Matcher<T> MatcherCast(const M& matcher) {
|
|
return internal::MatcherCastImpl<T, M>::Cast(matcher);
|
|
}
|
|
|
|
// Implements SafeMatcherCast().
|
|
//
|
|
// FIXME: The intermediate SafeMatcherCastImpl class was introduced as a
|
|
// workaround for a compiler bug, and can now be removed.
|
|
template <typename T>
|
|
class SafeMatcherCastImpl {
|
|
public:
|
|
// This overload handles polymorphic matchers and values only since
|
|
// monomorphic matchers are handled by the next one.
|
|
template <typename M>
|
|
static inline Matcher<T> Cast(const M& polymorphic_matcher_or_value) {
|
|
return internal::MatcherCastImpl<T, M>::Cast(polymorphic_matcher_or_value);
|
|
}
|
|
|
|
// This overload handles monomorphic matchers.
|
|
//
|
|
// In general, if type T can be implicitly converted to type U, we can
|
|
// safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
|
|
// contravariant): just keep a copy of the original Matcher<U>, convert the
|
|
// argument from type T to U, and then pass it to the underlying Matcher<U>.
|
|
// The only exception is when U is a reference and T is not, as the
|
|
// underlying Matcher<U> may be interested in the argument's address, which
|
|
// is not preserved in the conversion from T to U.
|
|
template <typename U>
|
|
static inline Matcher<T> Cast(const Matcher<U>& matcher) {
|
|
// Enforce that T can be implicitly converted to U.
|
|
GTEST_COMPILE_ASSERT_((std::is_convertible<T, U>::value),
|
|
"T must be implicitly convertible to U");
|
|
// Enforce that we are not converting a non-reference type T to a reference
|
|
// type U.
|
|
GTEST_COMPILE_ASSERT_(
|
|
std::is_reference<T>::value || !std::is_reference<U>::value,
|
|
cannot_convert_non_reference_arg_to_reference);
|
|
// In case both T and U are arithmetic types, enforce that the
|
|
// conversion is not lossy.
|
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT;
|
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU;
|
|
const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
|
|
const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
|
|
GTEST_COMPILE_ASSERT_(
|
|
kTIsOther || kUIsOther ||
|
|
(internal::LosslessArithmeticConvertible<RawT, RawU>::value),
|
|
conversion_of_arithmetic_types_must_be_lossless);
|
|
return MatcherCast<T>(matcher);
|
|
}
|
|
};
|
|
|
|
template <typename T, typename M>
|
|
inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher) {
|
|
return SafeMatcherCastImpl<T>::Cast(polymorphic_matcher);
|
|
}
|
|
|
|
// A<T>() returns a matcher that matches any value of type T.
|
|
template <typename T>
|
|
Matcher<T> A();
|
|
|
|
// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
|
|
// and MUST NOT BE USED IN USER CODE!!!
|
|
namespace internal {
|
|
|
|
// If the explanation is not empty, prints it to the ostream.
|
|
inline void PrintIfNotEmpty(const std::string& explanation,
|
|
::std::ostream* os) {
|
|
if (explanation != "" && os != nullptr) {
|
|
*os << ", " << explanation;
|
|
}
|
|
}
|
|
|
|
// Returns true if the given type name is easy to read by a human.
|
|
// This is used to decide whether printing the type of a value might
|
|
// be helpful.
|
|
inline bool IsReadableTypeName(const std::string& type_name) {
|
|
// We consider a type name readable if it's short or doesn't contain
|
|
// a template or function type.
|
|
return (type_name.length() <= 20 ||
|
|
type_name.find_first_of("<(") == std::string::npos);
|
|
}
|
|
|
|
// Matches the value against the given matcher, prints the value and explains
|
|
// the match result to the listener. Returns the match result.
|
|
// 'listener' must not be NULL.
|
|
// Value cannot be passed by const reference, because some matchers take a
|
|
// non-const argument.
|
|
template <typename Value, typename T>
|
|
bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher,
|
|
MatchResultListener* listener) {
|
|
if (!listener->IsInterested()) {
|
|
// If the listener is not interested, we do not need to construct the
|
|
// inner explanation.
|
|
return matcher.Matches(value);
|
|
}
|
|
|
|
StringMatchResultListener inner_listener;
|
|
const bool match = matcher.MatchAndExplain(value, &inner_listener);
|
|
|
|
UniversalPrint(value, listener->stream());
|
|
#if GTEST_HAS_RTTI
|
|
const std::string& type_name = GetTypeName<Value>();
|
|
if (IsReadableTypeName(type_name))
|
|
*listener->stream() << " (of type " << type_name << ")";
|
|
#endif
|
|
PrintIfNotEmpty(inner_listener.str(), listener->stream());
|
|
|
|
return match;
|
|
}
|
|
|
|
// An internal helper class for doing compile-time loop on a tuple's
|
|
// fields.
|
|
template <size_t N>
|
|
class TuplePrefix {
|
|
public:
|
|
// TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
|
|
// if and only if the first N fields of matcher_tuple matches
|
|
// the first N fields of value_tuple, respectively.
|
|
template <typename MatcherTuple, typename ValueTuple>
|
|
static bool Matches(const MatcherTuple& matcher_tuple,
|
|
const ValueTuple& value_tuple) {
|
|
return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) &&
|
|
std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple));
|
|
}
|
|
|
|
// TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os)
|
|
// describes failures in matching the first N fields of matchers
|
|
// against the first N fields of values. If there is no failure,
|
|
// nothing will be streamed to os.
|
|
template <typename MatcherTuple, typename ValueTuple>
|
|
static void ExplainMatchFailuresTo(const MatcherTuple& matchers,
|
|
const ValueTuple& values,
|
|
::std::ostream* os) {
|
|
// First, describes failures in the first N - 1 fields.
|
|
TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os);
|
|
|
|
// Then describes the failure (if any) in the (N - 1)-th (0-based)
|
|
// field.
|
|
typename std::tuple_element<N - 1, MatcherTuple>::type matcher =
|
|
std::get<N - 1>(matchers);
|
|
typedef typename std::tuple_element<N - 1, ValueTuple>::type Value;
|
|
const Value& value = std::get<N - 1>(values);
|
|
StringMatchResultListener listener;
|
|
if (!matcher.MatchAndExplain(value, &listener)) {
|
|
*os << " Expected arg #" << N - 1 << ": ";
|
|
std::get<N - 1>(matchers).DescribeTo(os);
|
|
*os << "\n Actual: ";
|
|
// We remove the reference in type Value to prevent the
|
|
// universal printer from printing the address of value, which
|
|
// isn't interesting to the user most of the time. The
|
|
// matcher's MatchAndExplain() method handles the case when
|
|
// the address is interesting.
|
|
internal::UniversalPrint(value, os);
|
|
PrintIfNotEmpty(listener.str(), os);
|
|
*os << "\n";
|
|
}
|
|
}
|
|
};
|
|
|
|
// The base case.
|
|
template <>
|
|
class TuplePrefix<0> {
|
|
public:
|
|
template <typename MatcherTuple, typename ValueTuple>
|
|
static bool Matches(const MatcherTuple& /* matcher_tuple */,
|
|
const ValueTuple& /* value_tuple */) {
|
|
return true;
|
|
}
|
|
|
|
template <typename MatcherTuple, typename ValueTuple>
|
|
static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */,
|
|
const ValueTuple& /* values */,
|
|
::std::ostream* /* os */) {}
|
|
};
|
|
|
|
// TupleMatches(matcher_tuple, value_tuple) returns true if and only if
|
|
// all matchers in matcher_tuple match the corresponding fields in
|
|
// value_tuple. It is a compiler error if matcher_tuple and
|
|
// value_tuple have different number of fields or incompatible field
|
|
// types.
|
|
template <typename MatcherTuple, typename ValueTuple>
|
|
bool TupleMatches(const MatcherTuple& matcher_tuple,
|
|
const ValueTuple& value_tuple) {
|
|
// Makes sure that matcher_tuple and value_tuple have the same
|
|
// number of fields.
|
|
GTEST_COMPILE_ASSERT_(std::tuple_size<MatcherTuple>::value ==
|
|
std::tuple_size<ValueTuple>::value,
|
|
matcher_and_value_have_different_numbers_of_fields);
|
|
return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple,
|
|
value_tuple);
|
|
}
|
|
|
|
// Describes failures in matching matchers against values. If there
|
|
// is no failure, nothing will be streamed to os.
|
|
template <typename MatcherTuple, typename ValueTuple>
|
|
void ExplainMatchFailureTupleTo(const MatcherTuple& matchers,
|
|
const ValueTuple& values,
|
|
::std::ostream* os) {
|
|
TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo(
|
|
matchers, values, os);
|
|
}
|
|
|
|
// TransformTupleValues and its helper.
|
|
//
|
|
// TransformTupleValuesHelper hides the internal machinery that
|
|
// TransformTupleValues uses to implement a tuple traversal.
|
|
template <typename Tuple, typename Func, typename OutIter>
|
|
class TransformTupleValuesHelper {
|
|
private:
|
|
typedef ::std::tuple_size<Tuple> TupleSize;
|
|
|
|
public:
|
|
// For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'.
|
|
// Returns the final value of 'out' in case the caller needs it.
|
|
static OutIter Run(Func f, const Tuple& t, OutIter out) {
|
|
return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out);
|
|
}
|
|
|
|
private:
|
|
template <typename Tup, size_t kRemainingSize>
|
|
struct IterateOverTuple {
|
|
OutIter operator() (Func f, const Tup& t, OutIter out) const {
|
|
*out++ = f(::std::get<TupleSize::value - kRemainingSize>(t));
|
|
return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out);
|
|
}
|
|
};
|
|
template <typename Tup>
|
|
struct IterateOverTuple<Tup, 0> {
|
|
OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const {
|
|
return out;
|
|
}
|
|
};
|
|
};
|
|
|
|
// Successively invokes 'f(element)' on each element of the tuple 't',
|
|
// appending each result to the 'out' iterator. Returns the final value
|
|
// of 'out'.
|
|
template <typename Tuple, typename Func, typename OutIter>
|
|
OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) {
|
|
return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out);
|
|
}
|
|
|
|
// Implements A<T>().
|
|
template <typename T>
|
|
class AnyMatcherImpl : public MatcherInterface<const T&> {
|
|
public:
|
|
bool MatchAndExplain(const T& /* x */,
|
|
MatchResultListener* /* listener */) const override {
|
|
return true;
|
|
}
|
|
void DescribeTo(::std::ostream* os) const override { *os << "is anything"; }
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
// This is mostly for completeness' safe, as it's not very useful
|
|
// to write Not(A<bool>()). However we cannot completely rule out
|
|
// such a possibility, and it doesn't hurt to be prepared.
|
|
*os << "never matches";
|
|
}
|
|
};
|
|
|
|
// Implements _, a matcher that matches any value of any
|
|
// type. This is a polymorphic matcher, so we need a template type
|
|
// conversion operator to make it appearing as a Matcher<T> for any
|
|
// type T.
|
|
class AnythingMatcher {
|
|
public:
|
|
template <typename T>
|
|
operator Matcher<T>() const { return A<T>(); }
|
|
};
|
|
|
|
// Implements the polymorphic IsNull() matcher, which matches any raw or smart
|
|
// pointer that is NULL.
|
|
class IsNullMatcher {
|
|
public:
|
|
template <typename Pointer>
|
|
bool MatchAndExplain(const Pointer& p,
|
|
MatchResultListener* /* listener */) const {
|
|
return p == nullptr;
|
|
}
|
|
|
|
void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "isn't NULL";
|
|
}
|
|
};
|
|
|
|
// Implements the polymorphic NotNull() matcher, which matches any raw or smart
|
|
// pointer that is not NULL.
|
|
class NotNullMatcher {
|
|
public:
|
|
template <typename Pointer>
|
|
bool MatchAndExplain(const Pointer& p,
|
|
MatchResultListener* /* listener */) const {
|
|
return p != nullptr;
|
|
}
|
|
|
|
void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; }
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "is NULL";
|
|
}
|
|
};
|
|
|
|
// Ref(variable) matches any argument that is a reference to
|
|
// 'variable'. This matcher is polymorphic as it can match any
|
|
// super type of the type of 'variable'.
|
|
//
|
|
// The RefMatcher template class implements Ref(variable). It can
|
|
// only be instantiated with a reference type. This prevents a user
|
|
// from mistakenly using Ref(x) to match a non-reference function
|
|
// argument. For example, the following will righteously cause a
|
|
// compiler error:
|
|
//
|
|
// int n;
|
|
// Matcher<int> m1 = Ref(n); // This won't compile.
|
|
// Matcher<int&> m2 = Ref(n); // This will compile.
|
|
template <typename T>
|
|
class RefMatcher;
|
|
|
|
template <typename T>
|
|
class RefMatcher<T&> {
|
|
// Google Mock is a generic framework and thus needs to support
|
|
// mocking any function types, including those that take non-const
|
|
// reference arguments. Therefore the template parameter T (and
|
|
// Super below) can be instantiated to either a const type or a
|
|
// non-const type.
|
|
public:
|
|
// RefMatcher() takes a T& instead of const T&, as we want the
|
|
// compiler to catch using Ref(const_value) as a matcher for a
|
|
// non-const reference.
|
|
explicit RefMatcher(T& x) : object_(x) {} // NOLINT
|
|
|
|
template <typename Super>
|
|
operator Matcher<Super&>() const {
|
|
// By passing object_ (type T&) to Impl(), which expects a Super&,
|
|
// we make sure that Super is a super type of T. In particular,
|
|
// this catches using Ref(const_value) as a matcher for a
|
|
// non-const reference, as you cannot implicitly convert a const
|
|
// reference to a non-const reference.
|
|
return MakeMatcher(new Impl<Super>(object_));
|
|
}
|
|
|
|
private:
|
|
template <typename Super>
|
|
class Impl : public MatcherInterface<Super&> {
|
|
public:
|
|
explicit Impl(Super& x) : object_(x) {} // NOLINT
|
|
|
|
// MatchAndExplain() takes a Super& (as opposed to const Super&)
|
|
// in order to match the interface MatcherInterface<Super&>.
|
|
bool MatchAndExplain(Super& x,
|
|
MatchResultListener* listener) const override {
|
|
*listener << "which is located @" << static_cast<const void*>(&x);
|
|
return &x == &object_;
|
|
}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "references the variable ";
|
|
UniversalPrinter<Super&>::Print(object_, os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "does not reference the variable ";
|
|
UniversalPrinter<Super&>::Print(object_, os);
|
|
}
|
|
|
|
private:
|
|
const Super& object_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(Impl);
|
|
};
|
|
|
|
T& object_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(RefMatcher);
|
|
};
|
|
|
|
// Polymorphic helper functions for narrow and wide string matchers.
|
|
inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
|
|
return String::CaseInsensitiveCStringEquals(lhs, rhs);
|
|
}
|
|
|
|
inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
|
|
const wchar_t* rhs) {
|
|
return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
|
|
}
|
|
|
|
// String comparison for narrow or wide strings that can have embedded NUL
|
|
// characters.
|
|
template <typename StringType>
|
|
bool CaseInsensitiveStringEquals(const StringType& s1,
|
|
const StringType& s2) {
|
|
// Are the heads equal?
|
|
if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
|
|
return false;
|
|
}
|
|
|
|
// Skip the equal heads.
|
|
const typename StringType::value_type nul = 0;
|
|
const size_t i1 = s1.find(nul), i2 = s2.find(nul);
|
|
|
|
// Are we at the end of either s1 or s2?
|
|
if (i1 == StringType::npos || i2 == StringType::npos) {
|
|
return i1 == i2;
|
|
}
|
|
|
|
// Are the tails equal?
|
|
return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
|
|
}
|
|
|
|
// String matchers.
|
|
|
|
// Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
|
|
template <typename StringType>
|
|
class StrEqualityMatcher {
|
|
public:
|
|
StrEqualityMatcher(const StringType& str, bool expect_eq,
|
|
bool case_sensitive)
|
|
: string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {}
|
|
|
|
#if GTEST_HAS_ABSL
|
|
bool MatchAndExplain(const absl::string_view& s,
|
|
MatchResultListener* listener) const {
|
|
// This should fail to compile if absl::string_view is used with wide
|
|
// strings.
|
|
const StringType& str = std::string(s);
|
|
return MatchAndExplain(str, listener);
|
|
}
|
|
#endif // GTEST_HAS_ABSL
|
|
|
|
// Accepts pointer types, particularly:
|
|
// const char*
|
|
// char*
|
|
// const wchar_t*
|
|
// wchar_t*
|
|
template <typename CharType>
|
|
bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
|
|
if (s == nullptr) {
|
|
return !expect_eq_;
|
|
}
|
|
return MatchAndExplain(StringType(s), listener);
|
|
}
|
|
|
|
// Matches anything that can convert to StringType.
|
|
//
|
|
// This is a template, not just a plain function with const StringType&,
|
|
// because absl::string_view has some interfering non-explicit constructors.
|
|
template <typename MatcheeStringType>
|
|
bool MatchAndExplain(const MatcheeStringType& s,
|
|
MatchResultListener* /* listener */) const {
|
|
const StringType& s2(s);
|
|
const bool eq = case_sensitive_ ? s2 == string_ :
|
|
CaseInsensitiveStringEquals(s2, string_);
|
|
return expect_eq_ == eq;
|
|
}
|
|
|
|
void DescribeTo(::std::ostream* os) const {
|
|
DescribeToHelper(expect_eq_, os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
DescribeToHelper(!expect_eq_, os);
|
|
}
|
|
|
|
private:
|
|
void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
|
|
*os << (expect_eq ? "is " : "isn't ");
|
|
*os << "equal to ";
|
|
if (!case_sensitive_) {
|
|
*os << "(ignoring case) ";
|
|
}
|
|
UniversalPrint(string_, os);
|
|
}
|
|
|
|
const StringType string_;
|
|
const bool expect_eq_;
|
|
const bool case_sensitive_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(StrEqualityMatcher);
|
|
};
|
|
|
|
// Implements the polymorphic HasSubstr(substring) matcher, which
|
|
// can be used as a Matcher<T> as long as T can be converted to a
|
|
// string.
|
|
template <typename StringType>
|
|
class HasSubstrMatcher {
|
|
public:
|
|
explicit HasSubstrMatcher(const StringType& substring)
|
|
: substring_(substring) {}
|
|
|
|
#if GTEST_HAS_ABSL
|
|
bool MatchAndExplain(const absl::string_view& s,
|
|
MatchResultListener* listener) const {
|
|
// This should fail to compile if absl::string_view is used with wide
|
|
// strings.
|
|
const StringType& str = std::string(s);
|
|
return MatchAndExplain(str, listener);
|
|
}
|
|
#endif // GTEST_HAS_ABSL
|
|
|
|
// Accepts pointer types, particularly:
|
|
// const char*
|
|
// char*
|
|
// const wchar_t*
|
|
// wchar_t*
|
|
template <typename CharType>
|
|
bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
|
|
return s != nullptr && MatchAndExplain(StringType(s), listener);
|
|
}
|
|
|
|
// Matches anything that can convert to StringType.
|
|
//
|
|
// This is a template, not just a plain function with const StringType&,
|
|
// because absl::string_view has some interfering non-explicit constructors.
|
|
template <typename MatcheeStringType>
|
|
bool MatchAndExplain(const MatcheeStringType& s,
|
|
MatchResultListener* /* listener */) const {
|
|
const StringType& s2(s);
|
|
return s2.find(substring_) != StringType::npos;
|
|
}
|
|
|
|
// Describes what this matcher matches.
|
|
void DescribeTo(::std::ostream* os) const {
|
|
*os << "has substring ";
|
|
UniversalPrint(substring_, os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "has no substring ";
|
|
UniversalPrint(substring_, os);
|
|
}
|
|
|
|
private:
|
|
const StringType substring_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(HasSubstrMatcher);
|
|
};
|
|
|
|
// Implements the polymorphic StartsWith(substring) matcher, which
|
|
// can be used as a Matcher<T> as long as T can be converted to a
|
|
// string.
|
|
template <typename StringType>
|
|
class StartsWithMatcher {
|
|
public:
|
|
explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {
|
|
}
|
|
|
|
#if GTEST_HAS_ABSL
|
|
bool MatchAndExplain(const absl::string_view& s,
|
|
MatchResultListener* listener) const {
|
|
// This should fail to compile if absl::string_view is used with wide
|
|
// strings.
|
|
const StringType& str = std::string(s);
|
|
return MatchAndExplain(str, listener);
|
|
}
|
|
#endif // GTEST_HAS_ABSL
|
|
|
|
// Accepts pointer types, particularly:
|
|
// const char*
|
|
// char*
|
|
// const wchar_t*
|
|
// wchar_t*
|
|
template <typename CharType>
|
|
bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
|
|
return s != nullptr && MatchAndExplain(StringType(s), listener);
|
|
}
|
|
|
|
// Matches anything that can convert to StringType.
|
|
//
|
|
// This is a template, not just a plain function with const StringType&,
|
|
// because absl::string_view has some interfering non-explicit constructors.
|
|
template <typename MatcheeStringType>
|
|
bool MatchAndExplain(const MatcheeStringType& s,
|
|
MatchResultListener* /* listener */) const {
|
|
const StringType& s2(s);
|
|
return s2.length() >= prefix_.length() &&
|
|
s2.substr(0, prefix_.length()) == prefix_;
|
|
}
|
|
|
|
void DescribeTo(::std::ostream* os) const {
|
|
*os << "starts with ";
|
|
UniversalPrint(prefix_, os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "doesn't start with ";
|
|
UniversalPrint(prefix_, os);
|
|
}
|
|
|
|
private:
|
|
const StringType prefix_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(StartsWithMatcher);
|
|
};
|
|
|
|
// Implements the polymorphic EndsWith(substring) matcher, which
|
|
// can be used as a Matcher<T> as long as T can be converted to a
|
|
// string.
|
|
template <typename StringType>
|
|
class EndsWithMatcher {
|
|
public:
|
|
explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
|
|
|
|
#if GTEST_HAS_ABSL
|
|
bool MatchAndExplain(const absl::string_view& s,
|
|
MatchResultListener* listener) const {
|
|
// This should fail to compile if absl::string_view is used with wide
|
|
// strings.
|
|
const StringType& str = std::string(s);
|
|
return MatchAndExplain(str, listener);
|
|
}
|
|
#endif // GTEST_HAS_ABSL
|
|
|
|
// Accepts pointer types, particularly:
|
|
// const char*
|
|
// char*
|
|
// const wchar_t*
|
|
// wchar_t*
|
|
template <typename CharType>
|
|
bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
|
|
return s != nullptr && MatchAndExplain(StringType(s), listener);
|
|
}
|
|
|
|
// Matches anything that can convert to StringType.
|
|
//
|
|
// This is a template, not just a plain function with const StringType&,
|
|
// because absl::string_view has some interfering non-explicit constructors.
|
|
template <typename MatcheeStringType>
|
|
bool MatchAndExplain(const MatcheeStringType& s,
|
|
MatchResultListener* /* listener */) const {
|
|
const StringType& s2(s);
|
|
return s2.length() >= suffix_.length() &&
|
|
s2.substr(s2.length() - suffix_.length()) == suffix_;
|
|
}
|
|
|
|
void DescribeTo(::std::ostream* os) const {
|
|
*os << "ends with ";
|
|
UniversalPrint(suffix_, os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "doesn't end with ";
|
|
UniversalPrint(suffix_, os);
|
|
}
|
|
|
|
private:
|
|
const StringType suffix_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(EndsWithMatcher);
|
|
};
|
|
|
|
// Implements a matcher that compares the two fields of a 2-tuple
|
|
// using one of the ==, <=, <, etc, operators. The two fields being
|
|
// compared don't have to have the same type.
|
|
//
|
|
// The matcher defined here is polymorphic (for example, Eq() can be
|
|
// used to match a std::tuple<int, short>, a std::tuple<const long&, double>,
|
|
// etc). Therefore we use a template type conversion operator in the
|
|
// implementation.
|
|
template <typename D, typename Op>
|
|
class PairMatchBase {
|
|
public:
|
|
template <typename T1, typename T2>
|
|
operator Matcher<::std::tuple<T1, T2>>() const {
|
|
return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>);
|
|
}
|
|
template <typename T1, typename T2>
|
|
operator Matcher<const ::std::tuple<T1, T2>&>() const {
|
|
return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>);
|
|
}
|
|
|
|
private:
|
|
static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT
|
|
return os << D::Desc();
|
|
}
|
|
|
|
template <typename Tuple>
|
|
class Impl : public MatcherInterface<Tuple> {
|
|
public:
|
|
bool MatchAndExplain(Tuple args,
|
|
MatchResultListener* /* listener */) const override {
|
|
return Op()(::std::get<0>(args), ::std::get<1>(args));
|
|
}
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "are " << GetDesc;
|
|
}
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "aren't " << GetDesc;
|
|
}
|
|
};
|
|
};
|
|
|
|
class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> {
|
|
public:
|
|
static const char* Desc() { return "an equal pair"; }
|
|
};
|
|
class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> {
|
|
public:
|
|
static const char* Desc() { return "an unequal pair"; }
|
|
};
|
|
class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> {
|
|
public:
|
|
static const char* Desc() { return "a pair where the first < the second"; }
|
|
};
|
|
class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> {
|
|
public:
|
|
static const char* Desc() { return "a pair where the first > the second"; }
|
|
};
|
|
class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> {
|
|
public:
|
|
static const char* Desc() { return "a pair where the first <= the second"; }
|
|
};
|
|
class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> {
|
|
public:
|
|
static const char* Desc() { return "a pair where the first >= the second"; }
|
|
};
|
|
|
|
// Implements the Not(...) matcher for a particular argument type T.
|
|
// We do not nest it inside the NotMatcher class template, as that
|
|
// will prevent different instantiations of NotMatcher from sharing
|
|
// the same NotMatcherImpl<T> class.
|
|
template <typename T>
|
|
class NotMatcherImpl : public MatcherInterface<const T&> {
|
|
public:
|
|
explicit NotMatcherImpl(const Matcher<T>& matcher)
|
|
: matcher_(matcher) {}
|
|
|
|
bool MatchAndExplain(const T& x,
|
|
MatchResultListener* listener) const override {
|
|
return !matcher_.MatchAndExplain(x, listener);
|
|
}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
private:
|
|
const Matcher<T> matcher_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(NotMatcherImpl);
|
|
};
|
|
|
|
// Implements the Not(m) matcher, which matches a value that doesn't
|
|
// match matcher m.
|
|
template <typename InnerMatcher>
|
|
class NotMatcher {
|
|
public:
|
|
explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
|
|
|
|
// This template type conversion operator allows Not(m) to be used
|
|
// to match any type m can match.
|
|
template <typename T>
|
|
operator Matcher<T>() const {
|
|
return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
|
|
}
|
|
|
|
private:
|
|
InnerMatcher matcher_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(NotMatcher);
|
|
};
|
|
|
|
// Implements the AllOf(m1, m2) matcher for a particular argument type
|
|
// T. We do not nest it inside the BothOfMatcher class template, as
|
|
// that will prevent different instantiations of BothOfMatcher from
|
|
// sharing the same BothOfMatcherImpl<T> class.
|
|
template <typename T>
|
|
class AllOfMatcherImpl : public MatcherInterface<const T&> {
|
|
public:
|
|
explicit AllOfMatcherImpl(std::vector<Matcher<T> > matchers)
|
|
: matchers_(std::move(matchers)) {}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "(";
|
|
for (size_t i = 0; i < matchers_.size(); ++i) {
|
|
if (i != 0) *os << ") and (";
|
|
matchers_[i].DescribeTo(os);
|
|
}
|
|
*os << ")";
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "(";
|
|
for (size_t i = 0; i < matchers_.size(); ++i) {
|
|
if (i != 0) *os << ") or (";
|
|
matchers_[i].DescribeNegationTo(os);
|
|
}
|
|
*os << ")";
|
|
}
|
|
|
|
bool MatchAndExplain(const T& x,
|
|
MatchResultListener* listener) const override {
|
|
// If either matcher1_ or matcher2_ doesn't match x, we only need
|
|
// to explain why one of them fails.
|
|
std::string all_match_result;
|
|
|
|
for (size_t i = 0; i < matchers_.size(); ++i) {
|
|
StringMatchResultListener slistener;
|
|
if (matchers_[i].MatchAndExplain(x, &slistener)) {
|
|
if (all_match_result.empty()) {
|
|
all_match_result = slistener.str();
|
|
} else {
|
|
std::string result = slistener.str();
|
|
if (!result.empty()) {
|
|
all_match_result += ", and ";
|
|
all_match_result += result;
|
|
}
|
|
}
|
|
} else {
|
|
*listener << slistener.str();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Otherwise we need to explain why *both* of them match.
|
|
*listener << all_match_result;
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
const std::vector<Matcher<T> > matchers_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(AllOfMatcherImpl);
|
|
};
|
|
|
|
// VariadicMatcher is used for the variadic implementation of
|
|
// AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...).
|
|
// CombiningMatcher<T> is used to recursively combine the provided matchers
|
|
// (of type Args...).
|
|
template <template <typename T> class CombiningMatcher, typename... Args>
|
|
class VariadicMatcher {
|
|
public:
|
|
VariadicMatcher(const Args&... matchers) // NOLINT
|
|
: matchers_(matchers...) {
|
|
static_assert(sizeof...(Args) > 0, "Must have at least one matcher.");
|
|
}
|
|
|
|
// This template type conversion operator allows an
|
|
// VariadicMatcher<Matcher1, Matcher2...> object to match any type that
|
|
// all of the provided matchers (Matcher1, Matcher2, ...) can match.
|
|
template <typename T>
|
|
operator Matcher<T>() const {
|
|
std::vector<Matcher<T> > values;
|
|
CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>());
|
|
return Matcher<T>(new CombiningMatcher<T>(std::move(values)));
|
|
}
|
|
|
|
private:
|
|
template <typename T, size_t I>
|
|
void CreateVariadicMatcher(std::vector<Matcher<T> >* values,
|
|
std::integral_constant<size_t, I>) const {
|
|
values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_)));
|
|
CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>());
|
|
}
|
|
|
|
template <typename T>
|
|
void CreateVariadicMatcher(
|
|
std::vector<Matcher<T> >*,
|
|
std::integral_constant<size_t, sizeof...(Args)>) const {}
|
|
|
|
std::tuple<Args...> matchers_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(VariadicMatcher);
|
|
};
|
|
|
|
template <typename... Args>
|
|
using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>;
|
|
|
|
// Implements the AnyOf(m1, m2) matcher for a particular argument type
|
|
// T. We do not nest it inside the AnyOfMatcher class template, as
|
|
// that will prevent different instantiations of AnyOfMatcher from
|
|
// sharing the same EitherOfMatcherImpl<T> class.
|
|
template <typename T>
|
|
class AnyOfMatcherImpl : public MatcherInterface<const T&> {
|
|
public:
|
|
explicit AnyOfMatcherImpl(std::vector<Matcher<T> > matchers)
|
|
: matchers_(std::move(matchers)) {}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "(";
|
|
for (size_t i = 0; i < matchers_.size(); ++i) {
|
|
if (i != 0) *os << ") or (";
|
|
matchers_[i].DescribeTo(os);
|
|
}
|
|
*os << ")";
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "(";
|
|
for (size_t i = 0; i < matchers_.size(); ++i) {
|
|
if (i != 0) *os << ") and (";
|
|
matchers_[i].DescribeNegationTo(os);
|
|
}
|
|
*os << ")";
|
|
}
|
|
|
|
bool MatchAndExplain(const T& x,
|
|
MatchResultListener* listener) const override {
|
|
std::string no_match_result;
|
|
|
|
// If either matcher1_ or matcher2_ matches x, we just need to
|
|
// explain why *one* of them matches.
|
|
for (size_t i = 0; i < matchers_.size(); ++i) {
|
|
StringMatchResultListener slistener;
|
|
if (matchers_[i].MatchAndExplain(x, &slistener)) {
|
|
*listener << slistener.str();
|
|
return true;
|
|
} else {
|
|
if (no_match_result.empty()) {
|
|
no_match_result = slistener.str();
|
|
} else {
|
|
std::string result = slistener.str();
|
|
if (!result.empty()) {
|
|
no_match_result += ", and ";
|
|
no_match_result += result;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Otherwise we need to explain why *both* of them fail.
|
|
*listener << no_match_result;
|
|
return false;
|
|
}
|
|
|
|
private:
|
|
const std::vector<Matcher<T> > matchers_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(AnyOfMatcherImpl);
|
|
};
|
|
|
|
// AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...).
|
|
template <typename... Args>
|
|
using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>;
|
|
|
|
// Wrapper for implementation of Any/AllOfArray().
|
|
template <template <class> class MatcherImpl, typename T>
|
|
class SomeOfArrayMatcher {
|
|
public:
|
|
// Constructs the matcher from a sequence of element values or
|
|
// element matchers.
|
|
template <typename Iter>
|
|
SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
|
|
|
|
template <typename U>
|
|
operator Matcher<U>() const { // NOLINT
|
|
using RawU = typename std::decay<U>::type;
|
|
std::vector<Matcher<RawU>> matchers;
|
|
for (const auto& matcher : matchers_) {
|
|
matchers.push_back(MatcherCast<RawU>(matcher));
|
|
}
|
|
return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers)));
|
|
}
|
|
|
|
private:
|
|
const ::std::vector<T> matchers_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(SomeOfArrayMatcher);
|
|
};
|
|
|
|
template <typename T>
|
|
using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>;
|
|
|
|
template <typename T>
|
|
using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>;
|
|
|
|
// Used for implementing Truly(pred), which turns a predicate into a
|
|
// matcher.
|
|
template <typename Predicate>
|
|
class TrulyMatcher {
|
|
public:
|
|
explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
|
|
|
|
// This method template allows Truly(pred) to be used as a matcher
|
|
// for type T where T is the argument type of predicate 'pred'. The
|
|
// argument is passed by reference as the predicate may be
|
|
// interested in the address of the argument.
|
|
template <typename T>
|
|
bool MatchAndExplain(T& x, // NOLINT
|
|
MatchResultListener* /* listener */) const {
|
|
// Without the if-statement, MSVC sometimes warns about converting
|
|
// a value to bool (warning 4800).
|
|
//
|
|
// We cannot write 'return !!predicate_(x);' as that doesn't work
|
|
// when predicate_(x) returns a class convertible to bool but
|
|
// having no operator!().
|
|
if (predicate_(x))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
void DescribeTo(::std::ostream* os) const {
|
|
*os << "satisfies the given predicate";
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "doesn't satisfy the given predicate";
|
|
}
|
|
|
|
private:
|
|
Predicate predicate_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(TrulyMatcher);
|
|
};
|
|
|
|
// Used for implementing Matches(matcher), which turns a matcher into
|
|
// a predicate.
|
|
template <typename M>
|
|
class MatcherAsPredicate {
|
|
public:
|
|
explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
|
|
|
|
// This template operator() allows Matches(m) to be used as a
|
|
// predicate on type T where m is a matcher on type T.
|
|
//
|
|
// The argument x is passed by reference instead of by value, as
|
|
// some matcher may be interested in its address (e.g. as in
|
|
// Matches(Ref(n))(x)).
|
|
template <typename T>
|
|
bool operator()(const T& x) const {
|
|
// We let matcher_ commit to a particular type here instead of
|
|
// when the MatcherAsPredicate object was constructed. This
|
|
// allows us to write Matches(m) where m is a polymorphic matcher
|
|
// (e.g. Eq(5)).
|
|
//
|
|
// If we write Matcher<T>(matcher_).Matches(x) here, it won't
|
|
// compile when matcher_ has type Matcher<const T&>; if we write
|
|
// Matcher<const T&>(matcher_).Matches(x) here, it won't compile
|
|
// when matcher_ has type Matcher<T>; if we just write
|
|
// matcher_.Matches(x), it won't compile when matcher_ is
|
|
// polymorphic, e.g. Eq(5).
|
|
//
|
|
// MatcherCast<const T&>() is necessary for making the code work
|
|
// in all of the above situations.
|
|
return MatcherCast<const T&>(matcher_).Matches(x);
|
|
}
|
|
|
|
private:
|
|
M matcher_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(MatcherAsPredicate);
|
|
};
|
|
|
|
// For implementing ASSERT_THAT() and EXPECT_THAT(). The template
|
|
// argument M must be a type that can be converted to a matcher.
|
|
template <typename M>
|
|
class PredicateFormatterFromMatcher {
|
|
public:
|
|
explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {}
|
|
|
|
// This template () operator allows a PredicateFormatterFromMatcher
|
|
// object to act as a predicate-formatter suitable for using with
|
|
// Google Test's EXPECT_PRED_FORMAT1() macro.
|
|
template <typename T>
|
|
AssertionResult operator()(const char* value_text, const T& x) const {
|
|
// We convert matcher_ to a Matcher<const T&> *now* instead of
|
|
// when the PredicateFormatterFromMatcher object was constructed,
|
|
// as matcher_ may be polymorphic (e.g. NotNull()) and we won't
|
|
// know which type to instantiate it to until we actually see the
|
|
// type of x here.
|
|
//
|
|
// We write SafeMatcherCast<const T&>(matcher_) instead of
|
|
// Matcher<const T&>(matcher_), as the latter won't compile when
|
|
// matcher_ has type Matcher<T> (e.g. An<int>()).
|
|
// We don't write MatcherCast<const T&> either, as that allows
|
|
// potentially unsafe downcasting of the matcher argument.
|
|
const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_);
|
|
|
|
// The expected path here is that the matcher should match (i.e. that most
|
|
// tests pass) so optimize for this case.
|
|
if (matcher.Matches(x)) {
|
|
return AssertionSuccess();
|
|
}
|
|
|
|
::std::stringstream ss;
|
|
ss << "Value of: " << value_text << "\n"
|
|
<< "Expected: ";
|
|
matcher.DescribeTo(&ss);
|
|
|
|
// Rerun the matcher to "PrintAndExain" the failure.
|
|
StringMatchResultListener listener;
|
|
if (MatchPrintAndExplain(x, matcher, &listener)) {
|
|
ss << "\n The matcher failed on the initial attempt; but passed when "
|
|
"rerun to generate the explanation.";
|
|
}
|
|
ss << "\n Actual: " << listener.str();
|
|
return AssertionFailure() << ss.str();
|
|
}
|
|
|
|
private:
|
|
const M matcher_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(PredicateFormatterFromMatcher);
|
|
};
|
|
|
|
// A helper function for converting a matcher to a predicate-formatter
|
|
// without the user needing to explicitly write the type. This is
|
|
// used for implementing ASSERT_THAT() and EXPECT_THAT().
|
|
// Implementation detail: 'matcher' is received by-value to force decaying.
|
|
template <typename M>
|
|
inline PredicateFormatterFromMatcher<M>
|
|
MakePredicateFormatterFromMatcher(M matcher) {
|
|
return PredicateFormatterFromMatcher<M>(std::move(matcher));
|
|
}
|
|
|
|
// Implements the polymorphic IsNan() matcher, which matches any floating type
|
|
// value that is Nan.
|
|
class IsNanMatcher {
|
|
public:
|
|
template <typename FloatType>
|
|
bool MatchAndExplain(const FloatType& f,
|
|
MatchResultListener* /* listener */) const {
|
|
return (::std::isnan)(f);
|
|
}
|
|
|
|
void DescribeTo(::std::ostream* os) const { *os << "is NaN"; }
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "isn't NaN";
|
|
}
|
|
};
|
|
|
|
// Implements the polymorphic floating point equality matcher, which matches
|
|
// two float values using ULP-based approximation or, optionally, a
|
|
// user-specified epsilon. The template is meant to be instantiated with
|
|
// FloatType being either float or double.
|
|
template <typename FloatType>
|
|
class FloatingEqMatcher {
|
|
public:
|
|
// Constructor for FloatingEqMatcher.
|
|
// The matcher's input will be compared with expected. The matcher treats two
|
|
// NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards,
|
|
// equality comparisons between NANs will always return false. We specify a
|
|
// negative max_abs_error_ term to indicate that ULP-based approximation will
|
|
// be used for comparison.
|
|
FloatingEqMatcher(FloatType expected, bool nan_eq_nan) :
|
|
expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) {
|
|
}
|
|
|
|
// Constructor that supports a user-specified max_abs_error that will be used
|
|
// for comparison instead of ULP-based approximation. The max absolute
|
|
// should be non-negative.
|
|
FloatingEqMatcher(FloatType expected, bool nan_eq_nan,
|
|
FloatType max_abs_error)
|
|
: expected_(expected),
|
|
nan_eq_nan_(nan_eq_nan),
|
|
max_abs_error_(max_abs_error) {
|
|
GTEST_CHECK_(max_abs_error >= 0)
|
|
<< ", where max_abs_error is" << max_abs_error;
|
|
}
|
|
|
|
// Implements floating point equality matcher as a Matcher<T>.
|
|
template <typename T>
|
|
class Impl : public MatcherInterface<T> {
|
|
public:
|
|
Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error)
|
|
: expected_(expected),
|
|
nan_eq_nan_(nan_eq_nan),
|
|
max_abs_error_(max_abs_error) {}
|
|
|
|
bool MatchAndExplain(T value,
|
|
MatchResultListener* listener) const override {
|
|
const FloatingPoint<FloatType> actual(value), expected(expected_);
|
|
|
|
// Compares NaNs first, if nan_eq_nan_ is true.
|
|
if (actual.is_nan() || expected.is_nan()) {
|
|
if (actual.is_nan() && expected.is_nan()) {
|
|
return nan_eq_nan_;
|
|
}
|
|
// One is nan; the other is not nan.
|
|
return false;
|
|
}
|
|
if (HasMaxAbsError()) {
|
|
// We perform an equality check so that inf will match inf, regardless
|
|
// of error bounds. If the result of value - expected_ would result in
|
|
// overflow or if either value is inf, the default result is infinity,
|
|
// which should only match if max_abs_error_ is also infinity.
|
|
if (value == expected_) {
|
|
return true;
|
|
}
|
|
|
|
const FloatType diff = value - expected_;
|
|
if (::std::fabs(diff) <= max_abs_error_) {
|
|
return true;
|
|
}
|
|
|
|
if (listener->IsInterested()) {
|
|
*listener << "which is " << diff << " from " << expected_;
|
|
}
|
|
return false;
|
|
} else {
|
|
return actual.AlmostEquals(expected);
|
|
}
|
|
}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
// os->precision() returns the previously set precision, which we
|
|
// store to restore the ostream to its original configuration
|
|
// after outputting.
|
|
const ::std::streamsize old_precision = os->precision(
|
|
::std::numeric_limits<FloatType>::digits10 + 2);
|
|
if (FloatingPoint<FloatType>(expected_).is_nan()) {
|
|
if (nan_eq_nan_) {
|
|
*os << "is NaN";
|
|
} else {
|
|
*os << "never matches";
|
|
}
|
|
} else {
|
|
*os << "is approximately " << expected_;
|
|
if (HasMaxAbsError()) {
|
|
*os << " (absolute error <= " << max_abs_error_ << ")";
|
|
}
|
|
}
|
|
os->precision(old_precision);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
// As before, get original precision.
|
|
const ::std::streamsize old_precision = os->precision(
|
|
::std::numeric_limits<FloatType>::digits10 + 2);
|
|
if (FloatingPoint<FloatType>(expected_).is_nan()) {
|
|
if (nan_eq_nan_) {
|
|
*os << "isn't NaN";
|
|
} else {
|
|
*os << "is anything";
|
|
}
|
|
} else {
|
|
*os << "isn't approximately " << expected_;
|
|
if (HasMaxAbsError()) {
|
|
*os << " (absolute error > " << max_abs_error_ << ")";
|
|
}
|
|
}
|
|
// Restore original precision.
|
|
os->precision(old_precision);
|
|
}
|
|
|
|
private:
|
|
bool HasMaxAbsError() const {
|
|
return max_abs_error_ >= 0;
|
|
}
|
|
|
|
const FloatType expected_;
|
|
const bool nan_eq_nan_;
|
|
// max_abs_error will be used for value comparison when >= 0.
|
|
const FloatType max_abs_error_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(Impl);
|
|
};
|
|
|
|
// The following 3 type conversion operators allow FloatEq(expected) and
|
|
// NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a
|
|
// Matcher<const float&>, or a Matcher<float&>, but nothing else.
|
|
// (While Google's C++ coding style doesn't allow arguments passed
|
|
// by non-const reference, we may see them in code not conforming to
|
|
// the style. Therefore Google Mock needs to support them.)
|
|
operator Matcher<FloatType>() const {
|
|
return MakeMatcher(
|
|
new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_));
|
|
}
|
|
|
|
operator Matcher<const FloatType&>() const {
|
|
return MakeMatcher(
|
|
new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
|
|
}
|
|
|
|
operator Matcher<FloatType&>() const {
|
|
return MakeMatcher(
|
|
new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
|
|
}
|
|
|
|
private:
|
|
const FloatType expected_;
|
|
const bool nan_eq_nan_;
|
|
// max_abs_error will be used for value comparison when >= 0.
|
|
const FloatType max_abs_error_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(FloatingEqMatcher);
|
|
};
|
|
|
|
// A 2-tuple ("binary") wrapper around FloatingEqMatcher:
|
|
// FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false)
|
|
// against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e)
|
|
// against y. The former implements "Eq", the latter "Near". At present, there
|
|
// is no version that compares NaNs as equal.
|
|
template <typename FloatType>
|
|
class FloatingEq2Matcher {
|
|
public:
|
|
FloatingEq2Matcher() { Init(-1, false); }
|
|
|
|
explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); }
|
|
|
|
explicit FloatingEq2Matcher(FloatType max_abs_error) {
|
|
Init(max_abs_error, false);
|
|
}
|
|
|
|
FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) {
|
|
Init(max_abs_error, nan_eq_nan);
|
|
}
|
|
|
|
template <typename T1, typename T2>
|
|
operator Matcher<::std::tuple<T1, T2>>() const {
|
|
return MakeMatcher(
|
|
new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_));
|
|
}
|
|
template <typename T1, typename T2>
|
|
operator Matcher<const ::std::tuple<T1, T2>&>() const {
|
|
return MakeMatcher(
|
|
new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_));
|
|
}
|
|
|
|
private:
|
|
static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT
|
|
return os << "an almost-equal pair";
|
|
}
|
|
|
|
template <typename Tuple>
|
|
class Impl : public MatcherInterface<Tuple> {
|
|
public:
|
|
Impl(FloatType max_abs_error, bool nan_eq_nan) :
|
|
max_abs_error_(max_abs_error),
|
|
nan_eq_nan_(nan_eq_nan) {}
|
|
|
|
bool MatchAndExplain(Tuple args,
|
|
MatchResultListener* listener) const override {
|
|
if (max_abs_error_ == -1) {
|
|
FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_);
|
|
return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
|
|
::std::get<1>(args), listener);
|
|
} else {
|
|
FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_,
|
|
max_abs_error_);
|
|
return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
|
|
::std::get<1>(args), listener);
|
|
}
|
|
}
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "are " << GetDesc;
|
|
}
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "aren't " << GetDesc;
|
|
}
|
|
|
|
private:
|
|
FloatType max_abs_error_;
|
|
const bool nan_eq_nan_;
|
|
};
|
|
|
|
void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) {
|
|
max_abs_error_ = max_abs_error_val;
|
|
nan_eq_nan_ = nan_eq_nan_val;
|
|
}
|
|
FloatType max_abs_error_;
|
|
bool nan_eq_nan_;
|
|
};
|
|
|
|
// Implements the Pointee(m) matcher for matching a pointer whose
|
|
// pointee matches matcher m. The pointer can be either raw or smart.
|
|
template <typename InnerMatcher>
|
|
class PointeeMatcher {
|
|
public:
|
|
explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
|
|
|
|
// This type conversion operator template allows Pointee(m) to be
|
|
// used as a matcher for any pointer type whose pointee type is
|
|
// compatible with the inner matcher, where type Pointer can be
|
|
// either a raw pointer or a smart pointer.
|
|
//
|
|
// The reason we do this instead of relying on
|
|
// MakePolymorphicMatcher() is that the latter is not flexible
|
|
// enough for implementing the DescribeTo() method of Pointee().
|
|
template <typename Pointer>
|
|
operator Matcher<Pointer>() const {
|
|
return Matcher<Pointer>(new Impl<const Pointer&>(matcher_));
|
|
}
|
|
|
|
private:
|
|
// The monomorphic implementation that works for a particular pointer type.
|
|
template <typename Pointer>
|
|
class Impl : public MatcherInterface<Pointer> {
|
|
public:
|
|
typedef typename PointeeOf<GTEST_REMOVE_REFERENCE_AND_CONST_(Pointer)>::type
|
|
Pointee;
|
|
|
|
explicit Impl(const InnerMatcher& matcher)
|
|
: matcher_(MatcherCast<const Pointee&>(matcher)) {}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "points to a value that ";
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "does not point to a value that ";
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
bool MatchAndExplain(Pointer pointer,
|
|
MatchResultListener* listener) const override {
|
|
if (GetRawPointer(pointer) == nullptr) return false;
|
|
|
|
*listener << "which points to ";
|
|
return MatchPrintAndExplain(*pointer, matcher_, listener);
|
|
}
|
|
|
|
private:
|
|
const Matcher<const Pointee&> matcher_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(Impl);
|
|
};
|
|
|
|
const InnerMatcher matcher_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(PointeeMatcher);
|
|
};
|
|
|
|
#if GTEST_HAS_RTTI
|
|
// Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or
|
|
// reference that matches inner_matcher when dynamic_cast<T> is applied.
|
|
// The result of dynamic_cast<To> is forwarded to the inner matcher.
|
|
// If To is a pointer and the cast fails, the inner matcher will receive NULL.
|
|
// If To is a reference and the cast fails, this matcher returns false
|
|
// immediately.
|
|
template <typename To>
|
|
class WhenDynamicCastToMatcherBase {
|
|
public:
|
|
explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher)
|
|
: matcher_(matcher) {}
|
|
|
|
void DescribeTo(::std::ostream* os) const {
|
|
GetCastTypeDescription(os);
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
GetCastTypeDescription(os);
|
|
matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
protected:
|
|
const Matcher<To> matcher_;
|
|
|
|
static std::string GetToName() {
|
|
return GetTypeName<To>();
|
|
}
|
|
|
|
private:
|
|
static void GetCastTypeDescription(::std::ostream* os) {
|
|
*os << "when dynamic_cast to " << GetToName() << ", ";
|
|
}
|
|
|
|
GTEST_DISALLOW_ASSIGN_(WhenDynamicCastToMatcherBase);
|
|
};
|
|
|
|
// Primary template.
|
|
// To is a pointer. Cast and forward the result.
|
|
template <typename To>
|
|
class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> {
|
|
public:
|
|
explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher)
|
|
: WhenDynamicCastToMatcherBase<To>(matcher) {}
|
|
|
|
template <typename From>
|
|
bool MatchAndExplain(From from, MatchResultListener* listener) const {
|
|
To to = dynamic_cast<To>(from);
|
|
return MatchPrintAndExplain(to, this->matcher_, listener);
|
|
}
|
|
};
|
|
|
|
// Specialize for references.
|
|
// In this case we return false if the dynamic_cast fails.
|
|
template <typename To>
|
|
class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> {
|
|
public:
|
|
explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher)
|
|
: WhenDynamicCastToMatcherBase<To&>(matcher) {}
|
|
|
|
template <typename From>
|
|
bool MatchAndExplain(From& from, MatchResultListener* listener) const {
|
|
// We don't want an std::bad_cast here, so do the cast with pointers.
|
|
To* to = dynamic_cast<To*>(&from);
|
|
if (to == nullptr) {
|
|
*listener << "which cannot be dynamic_cast to " << this->GetToName();
|
|
return false;
|
|
}
|
|
return MatchPrintAndExplain(*to, this->matcher_, listener);
|
|
}
|
|
};
|
|
#endif // GTEST_HAS_RTTI
|
|
|
|
// Implements the Field() matcher for matching a field (i.e. member
|
|
// variable) of an object.
|
|
template <typename Class, typename FieldType>
|
|
class FieldMatcher {
|
|
public:
|
|
FieldMatcher(FieldType Class::*field,
|
|
const Matcher<const FieldType&>& matcher)
|
|
: field_(field), matcher_(matcher), whose_field_("whose given field ") {}
|
|
|
|
FieldMatcher(const std::string& field_name, FieldType Class::*field,
|
|
const Matcher<const FieldType&>& matcher)
|
|
: field_(field),
|
|
matcher_(matcher),
|
|
whose_field_("whose field `" + field_name + "` ") {}
|
|
|
|
void DescribeTo(::std::ostream* os) const {
|
|
*os << "is an object " << whose_field_;
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "is an object " << whose_field_;
|
|
matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
template <typename T>
|
|
bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
|
|
// FIXME: The dispatch on std::is_pointer was introduced as a workaround for
|
|
// a compiler bug, and can now be removed.
|
|
return MatchAndExplainImpl(
|
|
typename std::is_pointer<typename std::remove_const<T>::type>::type(),
|
|
value, listener);
|
|
}
|
|
|
|
private:
|
|
bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
|
|
const Class& obj,
|
|
MatchResultListener* listener) const {
|
|
*listener << whose_field_ << "is ";
|
|
return MatchPrintAndExplain(obj.*field_, matcher_, listener);
|
|
}
|
|
|
|
bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
|
|
MatchResultListener* listener) const {
|
|
if (p == nullptr) return false;
|
|
|
|
*listener << "which points to an object ";
|
|
// Since *p has a field, it must be a class/struct/union type and
|
|
// thus cannot be a pointer. Therefore we pass false_type() as
|
|
// the first argument.
|
|
return MatchAndExplainImpl(std::false_type(), *p, listener);
|
|
}
|
|
|
|
const FieldType Class::*field_;
|
|
const Matcher<const FieldType&> matcher_;
|
|
|
|
// Contains either "whose given field " if the name of the field is unknown
|
|
// or "whose field `name_of_field` " if the name is known.
|
|
const std::string whose_field_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(FieldMatcher);
|
|
};
|
|
|
|
// Implements the Property() matcher for matching a property
|
|
// (i.e. return value of a getter method) of an object.
|
|
//
|
|
// Property is a const-qualified member function of Class returning
|
|
// PropertyType.
|
|
template <typename Class, typename PropertyType, typename Property>
|
|
class PropertyMatcher {
|
|
public:
|
|
typedef const PropertyType& RefToConstProperty;
|
|
|
|
PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher)
|
|
: property_(property),
|
|
matcher_(matcher),
|
|
whose_property_("whose given property ") {}
|
|
|
|
PropertyMatcher(const std::string& property_name, Property property,
|
|
const Matcher<RefToConstProperty>& matcher)
|
|
: property_(property),
|
|
matcher_(matcher),
|
|
whose_property_("whose property `" + property_name + "` ") {}
|
|
|
|
void DescribeTo(::std::ostream* os) const {
|
|
*os << "is an object " << whose_property_;
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "is an object " << whose_property_;
|
|
matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
template <typename T>
|
|
bool MatchAndExplain(const T&value, MatchResultListener* listener) const {
|
|
return MatchAndExplainImpl(
|
|
typename std::is_pointer<typename std::remove_const<T>::type>::type(),
|
|
value, listener);
|
|
}
|
|
|
|
private:
|
|
bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
|
|
const Class& obj,
|
|
MatchResultListener* listener) const {
|
|
*listener << whose_property_ << "is ";
|
|
// Cannot pass the return value (for example, int) to MatchPrintAndExplain,
|
|
// which takes a non-const reference as argument.
|
|
RefToConstProperty result = (obj.*property_)();
|
|
return MatchPrintAndExplain(result, matcher_, listener);
|
|
}
|
|
|
|
bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
|
|
MatchResultListener* listener) const {
|
|
if (p == nullptr) return false;
|
|
|
|
*listener << "which points to an object ";
|
|
// Since *p has a property method, it must be a class/struct/union
|
|
// type and thus cannot be a pointer. Therefore we pass
|
|
// false_type() as the first argument.
|
|
return MatchAndExplainImpl(std::false_type(), *p, listener);
|
|
}
|
|
|
|
Property property_;
|
|
const Matcher<RefToConstProperty> matcher_;
|
|
|
|
// Contains either "whose given property " if the name of the property is
|
|
// unknown or "whose property `name_of_property` " if the name is known.
|
|
const std::string whose_property_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(PropertyMatcher);
|
|
};
|
|
|
|
// Type traits specifying various features of different functors for ResultOf.
|
|
// The default template specifies features for functor objects.
|
|
template <typename Functor>
|
|
struct CallableTraits {
|
|
typedef Functor StorageType;
|
|
|
|
static void CheckIsValid(Functor /* functor */) {}
|
|
|
|
template <typename T>
|
|
static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) {
|
|
return f(arg);
|
|
}
|
|
};
|
|
|
|
// Specialization for function pointers.
|
|
template <typename ArgType, typename ResType>
|
|
struct CallableTraits<ResType(*)(ArgType)> {
|
|
typedef ResType ResultType;
|
|
typedef ResType(*StorageType)(ArgType);
|
|
|
|
static void CheckIsValid(ResType(*f)(ArgType)) {
|
|
GTEST_CHECK_(f != nullptr)
|
|
<< "NULL function pointer is passed into ResultOf().";
|
|
}
|
|
template <typename T>
|
|
static ResType Invoke(ResType(*f)(ArgType), T arg) {
|
|
return (*f)(arg);
|
|
}
|
|
};
|
|
|
|
// Implements the ResultOf() matcher for matching a return value of a
|
|
// unary function of an object.
|
|
template <typename Callable, typename InnerMatcher>
|
|
class ResultOfMatcher {
|
|
public:
|
|
ResultOfMatcher(Callable callable, InnerMatcher matcher)
|
|
: callable_(std::move(callable)), matcher_(std::move(matcher)) {
|
|
CallableTraits<Callable>::CheckIsValid(callable_);
|
|
}
|
|
|
|
template <typename T>
|
|
operator Matcher<T>() const {
|
|
return Matcher<T>(new Impl<const T&>(callable_, matcher_));
|
|
}
|
|
|
|
private:
|
|
typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
|
|
|
|
template <typename T>
|
|
class Impl : public MatcherInterface<T> {
|
|
using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>(
|
|
std::declval<CallableStorageType>(), std::declval<T>()));
|
|
|
|
public:
|
|
template <typename M>
|
|
Impl(const CallableStorageType& callable, const M& matcher)
|
|
: callable_(callable), matcher_(MatcherCast<ResultType>(matcher)) {}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "is mapped by the given callable to a value that ";
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "is mapped by the given callable to a value that ";
|
|
matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
bool MatchAndExplain(T obj, MatchResultListener* listener) const override {
|
|
*listener << "which is mapped by the given callable to ";
|
|
// Cannot pass the return value directly to MatchPrintAndExplain, which
|
|
// takes a non-const reference as argument.
|
|
// Also, specifying template argument explicitly is needed because T could
|
|
// be a non-const reference (e.g. Matcher<Uncopyable&>).
|
|
ResultType result =
|
|
CallableTraits<Callable>::template Invoke<T>(callable_, obj);
|
|
return MatchPrintAndExplain(result, matcher_, listener);
|
|
}
|
|
|
|
private:
|
|
// Functors often define operator() as non-const method even though
|
|
// they are actually stateless. But we need to use them even when
|
|
// 'this' is a const pointer. It's the user's responsibility not to
|
|
// use stateful callables with ResultOf(), which doesn't guarantee
|
|
// how many times the callable will be invoked.
|
|
mutable CallableStorageType callable_;
|
|
const Matcher<ResultType> matcher_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(Impl);
|
|
}; // class Impl
|
|
|
|
const CallableStorageType callable_;
|
|
const InnerMatcher matcher_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(ResultOfMatcher);
|
|
};
|
|
|
|
// Implements a matcher that checks the size of an STL-style container.
|
|
template <typename SizeMatcher>
|
|
class SizeIsMatcher {
|
|
public:
|
|
explicit SizeIsMatcher(const SizeMatcher& size_matcher)
|
|
: size_matcher_(size_matcher) {
|
|
}
|
|
|
|
template <typename Container>
|
|
operator Matcher<Container>() const {
|
|
return Matcher<Container>(new Impl<const Container&>(size_matcher_));
|
|
}
|
|
|
|
template <typename Container>
|
|
class Impl : public MatcherInterface<Container> {
|
|
public:
|
|
using SizeType = decltype(std::declval<Container>().size());
|
|
explicit Impl(const SizeMatcher& size_matcher)
|
|
: size_matcher_(MatcherCast<SizeType>(size_matcher)) {}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "size ";
|
|
size_matcher_.DescribeTo(os);
|
|
}
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "size ";
|
|
size_matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
bool MatchAndExplain(Container container,
|
|
MatchResultListener* listener) const override {
|
|
SizeType size = container.size();
|
|
StringMatchResultListener size_listener;
|
|
const bool result = size_matcher_.MatchAndExplain(size, &size_listener);
|
|
*listener
|
|
<< "whose size " << size << (result ? " matches" : " doesn't match");
|
|
PrintIfNotEmpty(size_listener.str(), listener->stream());
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
const Matcher<SizeType> size_matcher_;
|
|
GTEST_DISALLOW_ASSIGN_(Impl);
|
|
};
|
|
|
|
private:
|
|
const SizeMatcher size_matcher_;
|
|
GTEST_DISALLOW_ASSIGN_(SizeIsMatcher);
|
|
};
|
|
|
|
// Implements a matcher that checks the begin()..end() distance of an STL-style
|
|
// container.
|
|
template <typename DistanceMatcher>
|
|
class BeginEndDistanceIsMatcher {
|
|
public:
|
|
explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher)
|
|
: distance_matcher_(distance_matcher) {}
|
|
|
|
template <typename Container>
|
|
operator Matcher<Container>() const {
|
|
return Matcher<Container>(new Impl<const Container&>(distance_matcher_));
|
|
}
|
|
|
|
template <typename Container>
|
|
class Impl : public MatcherInterface<Container> {
|
|
public:
|
|
typedef internal::StlContainerView<
|
|
GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView;
|
|
typedef typename std::iterator_traits<
|
|
typename ContainerView::type::const_iterator>::difference_type
|
|
DistanceType;
|
|
explicit Impl(const DistanceMatcher& distance_matcher)
|
|
: distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "distance between begin() and end() ";
|
|
distance_matcher_.DescribeTo(os);
|
|
}
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "distance between begin() and end() ";
|
|
distance_matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
bool MatchAndExplain(Container container,
|
|
MatchResultListener* listener) const override {
|
|
using std::begin;
|
|
using std::end;
|
|
DistanceType distance = std::distance(begin(container), end(container));
|
|
StringMatchResultListener distance_listener;
|
|
const bool result =
|
|
distance_matcher_.MatchAndExplain(distance, &distance_listener);
|
|
*listener << "whose distance between begin() and end() " << distance
|
|
<< (result ? " matches" : " doesn't match");
|
|
PrintIfNotEmpty(distance_listener.str(), listener->stream());
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
const Matcher<DistanceType> distance_matcher_;
|
|
GTEST_DISALLOW_ASSIGN_(Impl);
|
|
};
|
|
|
|
private:
|
|
const DistanceMatcher distance_matcher_;
|
|
GTEST_DISALLOW_ASSIGN_(BeginEndDistanceIsMatcher);
|
|
};
|
|
|
|
// Implements an equality matcher for any STL-style container whose elements
|
|
// support ==. This matcher is like Eq(), but its failure explanations provide
|
|
// more detailed information that is useful when the container is used as a set.
|
|
// The failure message reports elements that are in one of the operands but not
|
|
// the other. The failure messages do not report duplicate or out-of-order
|
|
// elements in the containers (which don't properly matter to sets, but can
|
|
// occur if the containers are vectors or lists, for example).
|
|
//
|
|
// Uses the container's const_iterator, value_type, operator ==,
|
|
// begin(), and end().
|
|
template <typename Container>
|
|
class ContainerEqMatcher {
|
|
public:
|
|
typedef internal::StlContainerView<Container> View;
|
|
typedef typename View::type StlContainer;
|
|
typedef typename View::const_reference StlContainerReference;
|
|
|
|
static_assert(!std::is_const<Container>::value,
|
|
"Container type must not be const");
|
|
static_assert(!std::is_reference<Container>::value,
|
|
"Container type must not be a reference");
|
|
|
|
// We make a copy of expected in case the elements in it are modified
|
|
// after this matcher is created.
|
|
explicit ContainerEqMatcher(const Container& expected)
|
|
: expected_(View::Copy(expected)) {}
|
|
|
|
void DescribeTo(::std::ostream* os) const {
|
|
*os << "equals ";
|
|
UniversalPrint(expected_, os);
|
|
}
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "does not equal ";
|
|
UniversalPrint(expected_, os);
|
|
}
|
|
|
|
template <typename LhsContainer>
|
|
bool MatchAndExplain(const LhsContainer& lhs,
|
|
MatchResultListener* listener) const {
|
|
typedef internal::StlContainerView<
|
|
typename std::remove_const<LhsContainer>::type>
|
|
LhsView;
|
|
typedef typename LhsView::type LhsStlContainer;
|
|
StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
|
|
if (lhs_stl_container == expected_)
|
|
return true;
|
|
|
|
::std::ostream* const os = listener->stream();
|
|
if (os != nullptr) {
|
|
// Something is different. Check for extra values first.
|
|
bool printed_header = false;
|
|
for (typename LhsStlContainer::const_iterator it =
|
|
lhs_stl_container.begin();
|
|
it != lhs_stl_container.end(); ++it) {
|
|
if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) ==
|
|
expected_.end()) {
|
|
if (printed_header) {
|
|
*os << ", ";
|
|
} else {
|
|
*os << "which has these unexpected elements: ";
|
|
printed_header = true;
|
|
}
|
|
UniversalPrint(*it, os);
|
|
}
|
|
}
|
|
|
|
// Now check for missing values.
|
|
bool printed_header2 = false;
|
|
for (typename StlContainer::const_iterator it = expected_.begin();
|
|
it != expected_.end(); ++it) {
|
|
if (internal::ArrayAwareFind(
|
|
lhs_stl_container.begin(), lhs_stl_container.end(), *it) ==
|
|
lhs_stl_container.end()) {
|
|
if (printed_header2) {
|
|
*os << ", ";
|
|
} else {
|
|
*os << (printed_header ? ",\nand" : "which")
|
|
<< " doesn't have these expected elements: ";
|
|
printed_header2 = true;
|
|
}
|
|
UniversalPrint(*it, os);
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
private:
|
|
const StlContainer expected_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(ContainerEqMatcher);
|
|
};
|
|
|
|
// A comparator functor that uses the < operator to compare two values.
|
|
struct LessComparator {
|
|
template <typename T, typename U>
|
|
bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; }
|
|
};
|
|
|
|
// Implements WhenSortedBy(comparator, container_matcher).
|
|
template <typename Comparator, typename ContainerMatcher>
|
|
class WhenSortedByMatcher {
|
|
public:
|
|
WhenSortedByMatcher(const Comparator& comparator,
|
|
const ContainerMatcher& matcher)
|
|
: comparator_(comparator), matcher_(matcher) {}
|
|
|
|
template <typename LhsContainer>
|
|
operator Matcher<LhsContainer>() const {
|
|
return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_));
|
|
}
|
|
|
|
template <typename LhsContainer>
|
|
class Impl : public MatcherInterface<LhsContainer> {
|
|
public:
|
|
typedef internal::StlContainerView<
|
|
GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
|
|
typedef typename LhsView::type LhsStlContainer;
|
|
typedef typename LhsView::const_reference LhsStlContainerReference;
|
|
// Transforms std::pair<const Key, Value> into std::pair<Key, Value>
|
|
// so that we can match associative containers.
|
|
typedef typename RemoveConstFromKey<
|
|
typename LhsStlContainer::value_type>::type LhsValue;
|
|
|
|
Impl(const Comparator& comparator, const ContainerMatcher& matcher)
|
|
: comparator_(comparator), matcher_(matcher) {}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "(when sorted) ";
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "(when sorted) ";
|
|
matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
bool MatchAndExplain(LhsContainer lhs,
|
|
MatchResultListener* listener) const override {
|
|
LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
|
|
::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(),
|
|
lhs_stl_container.end());
|
|
::std::sort(
|
|
sorted_container.begin(), sorted_container.end(), comparator_);
|
|
|
|
if (!listener->IsInterested()) {
|
|
// If the listener is not interested, we do not need to
|
|
// construct the inner explanation.
|
|
return matcher_.Matches(sorted_container);
|
|
}
|
|
|
|
*listener << "which is ";
|
|
UniversalPrint(sorted_container, listener->stream());
|
|
*listener << " when sorted";
|
|
|
|
StringMatchResultListener inner_listener;
|
|
const bool match = matcher_.MatchAndExplain(sorted_container,
|
|
&inner_listener);
|
|
PrintIfNotEmpty(inner_listener.str(), listener->stream());
|
|
return match;
|
|
}
|
|
|
|
private:
|
|
const Comparator comparator_;
|
|
const Matcher<const ::std::vector<LhsValue>&> matcher_;
|
|
|
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
|
|
};
|
|
|
|
private:
|
|
const Comparator comparator_;
|
|
const ContainerMatcher matcher_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(WhenSortedByMatcher);
|
|
};
|
|
|
|
// Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher
|
|
// must be able to be safely cast to Matcher<std::tuple<const T1&, const
|
|
// T2&> >, where T1 and T2 are the types of elements in the LHS
|
|
// container and the RHS container respectively.
|
|
template <typename TupleMatcher, typename RhsContainer>
|
|
class PointwiseMatcher {
|
|
GTEST_COMPILE_ASSERT_(
|
|
!IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value,
|
|
use_UnorderedPointwise_with_hash_tables);
|
|
|
|
public:
|
|
typedef internal::StlContainerView<RhsContainer> RhsView;
|
|
typedef typename RhsView::type RhsStlContainer;
|
|
typedef typename RhsStlContainer::value_type RhsValue;
|
|
|
|
static_assert(!std::is_const<RhsContainer>::value,
|
|
"RhsContainer type must not be const");
|
|
static_assert(!std::is_reference<RhsContainer>::value,
|
|
"RhsContainer type must not be a reference");
|
|
|
|
// Like ContainerEq, we make a copy of rhs in case the elements in
|
|
// it are modified after this matcher is created.
|
|
PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs)
|
|
: tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {}
|
|
|
|
template <typename LhsContainer>
|
|
operator Matcher<LhsContainer>() const {
|
|
GTEST_COMPILE_ASSERT_(
|
|
!IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value,
|
|
use_UnorderedPointwise_with_hash_tables);
|
|
|
|
return Matcher<LhsContainer>(
|
|
new Impl<const LhsContainer&>(tuple_matcher_, rhs_));
|
|
}
|
|
|
|
template <typename LhsContainer>
|
|
class Impl : public MatcherInterface<LhsContainer> {
|
|
public:
|
|
typedef internal::StlContainerView<
|
|
GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
|
|
typedef typename LhsView::type LhsStlContainer;
|
|
typedef typename LhsView::const_reference LhsStlContainerReference;
|
|
typedef typename LhsStlContainer::value_type LhsValue;
|
|
// We pass the LHS value and the RHS value to the inner matcher by
|
|
// reference, as they may be expensive to copy. We must use tuple
|
|
// instead of pair here, as a pair cannot hold references (C++ 98,
|
|
// 20.2.2 [lib.pairs]).
|
|
typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg;
|
|
|
|
Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs)
|
|
// mono_tuple_matcher_ holds a monomorphic version of the tuple matcher.
|
|
: mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)),
|
|
rhs_(rhs) {}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "contains " << rhs_.size()
|
|
<< " values, where each value and its corresponding value in ";
|
|
UniversalPrinter<RhsStlContainer>::Print(rhs_, os);
|
|
*os << " ";
|
|
mono_tuple_matcher_.DescribeTo(os);
|
|
}
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "doesn't contain exactly " << rhs_.size()
|
|
<< " values, or contains a value x at some index i"
|
|
<< " where x and the i-th value of ";
|
|
UniversalPrint(rhs_, os);
|
|
*os << " ";
|
|
mono_tuple_matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
bool MatchAndExplain(LhsContainer lhs,
|
|
MatchResultListener* listener) const override {
|
|
LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
|
|
const size_t actual_size = lhs_stl_container.size();
|
|
if (actual_size != rhs_.size()) {
|
|
*listener << "which contains " << actual_size << " values";
|
|
return false;
|
|
}
|
|
|
|
typename LhsStlContainer::const_iterator left = lhs_stl_container.begin();
|
|
typename RhsStlContainer::const_iterator right = rhs_.begin();
|
|
for (size_t i = 0; i != actual_size; ++i, ++left, ++right) {
|
|
if (listener->IsInterested()) {
|
|
StringMatchResultListener inner_listener;
|
|
// Create InnerMatcherArg as a temporarily object to avoid it outlives
|
|
// *left and *right. Dereference or the conversion to `const T&` may
|
|
// return temp objects, e.g for vector<bool>.
|
|
if (!mono_tuple_matcher_.MatchAndExplain(
|
|
InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
|
|
ImplicitCast_<const RhsValue&>(*right)),
|
|
&inner_listener)) {
|
|
*listener << "where the value pair (";
|
|
UniversalPrint(*left, listener->stream());
|
|
*listener << ", ";
|
|
UniversalPrint(*right, listener->stream());
|
|
*listener << ") at index #" << i << " don't match";
|
|
PrintIfNotEmpty(inner_listener.str(), listener->stream());
|
|
return false;
|
|
}
|
|
} else {
|
|
if (!mono_tuple_matcher_.Matches(
|
|
InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
|
|
ImplicitCast_<const RhsValue&>(*right))))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
const Matcher<InnerMatcherArg> mono_tuple_matcher_;
|
|
const RhsStlContainer rhs_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(Impl);
|
|
};
|
|
|
|
private:
|
|
const TupleMatcher tuple_matcher_;
|
|
const RhsStlContainer rhs_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(PointwiseMatcher);
|
|
};
|
|
|
|
// Holds the logic common to ContainsMatcherImpl and EachMatcherImpl.
|
|
template <typename Container>
|
|
class QuantifierMatcherImpl : public MatcherInterface<Container> {
|
|
public:
|
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
|
|
typedef StlContainerView<RawContainer> View;
|
|
typedef typename View::type StlContainer;
|
|
typedef typename View::const_reference StlContainerReference;
|
|
typedef typename StlContainer::value_type Element;
|
|
|
|
template <typename InnerMatcher>
|
|
explicit QuantifierMatcherImpl(InnerMatcher inner_matcher)
|
|
: inner_matcher_(
|
|
testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
|
|
|
|
// Checks whether:
|
|
// * All elements in the container match, if all_elements_should_match.
|
|
// * Any element in the container matches, if !all_elements_should_match.
|
|
bool MatchAndExplainImpl(bool all_elements_should_match,
|
|
Container container,
|
|
MatchResultListener* listener) const {
|
|
StlContainerReference stl_container = View::ConstReference(container);
|
|
size_t i = 0;
|
|
for (typename StlContainer::const_iterator it = stl_container.begin();
|
|
it != stl_container.end(); ++it, ++i) {
|
|
StringMatchResultListener inner_listener;
|
|
const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
|
|
|
|
if (matches != all_elements_should_match) {
|
|
*listener << "whose element #" << i
|
|
<< (matches ? " matches" : " doesn't match");
|
|
PrintIfNotEmpty(inner_listener.str(), listener->stream());
|
|
return !all_elements_should_match;
|
|
}
|
|
}
|
|
return all_elements_should_match;
|
|
}
|
|
|
|
protected:
|
|
const Matcher<const Element&> inner_matcher_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(QuantifierMatcherImpl);
|
|
};
|
|
|
|
// Implements Contains(element_matcher) for the given argument type Container.
|
|
// Symmetric to EachMatcherImpl.
|
|
template <typename Container>
|
|
class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> {
|
|
public:
|
|
template <typename InnerMatcher>
|
|
explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
|
|
: QuantifierMatcherImpl<Container>(inner_matcher) {}
|
|
|
|
// Describes what this matcher does.
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "contains at least one element that ";
|
|
this->inner_matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "doesn't contain any element that ";
|
|
this->inner_matcher_.DescribeTo(os);
|
|
}
|
|
|
|
bool MatchAndExplain(Container container,
|
|
MatchResultListener* listener) const override {
|
|
return this->MatchAndExplainImpl(false, container, listener);
|
|
}
|
|
|
|
private:
|
|
GTEST_DISALLOW_ASSIGN_(ContainsMatcherImpl);
|
|
};
|
|
|
|
// Implements Each(element_matcher) for the given argument type Container.
|
|
// Symmetric to ContainsMatcherImpl.
|
|
template <typename Container>
|
|
class EachMatcherImpl : public QuantifierMatcherImpl<Container> {
|
|
public:
|
|
template <typename InnerMatcher>
|
|
explicit EachMatcherImpl(InnerMatcher inner_matcher)
|
|
: QuantifierMatcherImpl<Container>(inner_matcher) {}
|
|
|
|
// Describes what this matcher does.
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "only contains elements that ";
|
|
this->inner_matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "contains some element that ";
|
|
this->inner_matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
bool MatchAndExplain(Container container,
|
|
MatchResultListener* listener) const override {
|
|
return this->MatchAndExplainImpl(true, container, listener);
|
|
}
|
|
|
|
private:
|
|
GTEST_DISALLOW_ASSIGN_(EachMatcherImpl);
|
|
};
|
|
|
|
// Implements polymorphic Contains(element_matcher).
|
|
template <typename M>
|
|
class ContainsMatcher {
|
|
public:
|
|
explicit ContainsMatcher(M m) : inner_matcher_(m) {}
|
|
|
|
template <typename Container>
|
|
operator Matcher<Container>() const {
|
|
return Matcher<Container>(
|
|
new ContainsMatcherImpl<const Container&>(inner_matcher_));
|
|
}
|
|
|
|
private:
|
|
const M inner_matcher_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(ContainsMatcher);
|
|
};
|
|
|
|
// Implements polymorphic Each(element_matcher).
|
|
template <typename M>
|
|
class EachMatcher {
|
|
public:
|
|
explicit EachMatcher(M m) : inner_matcher_(m) {}
|
|
|
|
template <typename Container>
|
|
operator Matcher<Container>() const {
|
|
return Matcher<Container>(
|
|
new EachMatcherImpl<const Container&>(inner_matcher_));
|
|
}
|
|
|
|
private:
|
|
const M inner_matcher_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(EachMatcher);
|
|
};
|
|
|
|
struct Rank1 {};
|
|
struct Rank0 : Rank1 {};
|
|
|
|
namespace pair_getters {
|
|
using std::get;
|
|
template <typename T>
|
|
auto First(T& x, Rank1) -> decltype(get<0>(x)) { // NOLINT
|
|
return get<0>(x);
|
|
}
|
|
template <typename T>
|
|
auto First(T& x, Rank0) -> decltype((x.first)) { // NOLINT
|
|
return x.first;
|
|
}
|
|
|
|
template <typename T>
|
|
auto Second(T& x, Rank1) -> decltype(get<1>(x)) { // NOLINT
|
|
return get<1>(x);
|
|
}
|
|
template <typename T>
|
|
auto Second(T& x, Rank0) -> decltype((x.second)) { // NOLINT
|
|
return x.second;
|
|
}
|
|
} // namespace pair_getters
|
|
|
|
// Implements Key(inner_matcher) for the given argument pair type.
|
|
// Key(inner_matcher) matches an std::pair whose 'first' field matches
|
|
// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
|
|
// std::map that contains at least one element whose key is >= 5.
|
|
template <typename PairType>
|
|
class KeyMatcherImpl : public MatcherInterface<PairType> {
|
|
public:
|
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
|
|
typedef typename RawPairType::first_type KeyType;
|
|
|
|
template <typename InnerMatcher>
|
|
explicit KeyMatcherImpl(InnerMatcher inner_matcher)
|
|
: inner_matcher_(
|
|
testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {
|
|
}
|
|
|
|
// Returns true if and only if 'key_value.first' (the key) matches the inner
|
|
// matcher.
|
|
bool MatchAndExplain(PairType key_value,
|
|
MatchResultListener* listener) const override {
|
|
StringMatchResultListener inner_listener;
|
|
const bool match = inner_matcher_.MatchAndExplain(
|
|
pair_getters::First(key_value, Rank0()), &inner_listener);
|
|
const std::string explanation = inner_listener.str();
|
|
if (explanation != "") {
|
|
*listener << "whose first field is a value " << explanation;
|
|
}
|
|
return match;
|
|
}
|
|
|
|
// Describes what this matcher does.
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "has a key that ";
|
|
inner_matcher_.DescribeTo(os);
|
|
}
|
|
|
|
// Describes what the negation of this matcher does.
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "doesn't have a key that ";
|
|
inner_matcher_.DescribeTo(os);
|
|
}
|
|
|
|
private:
|
|
const Matcher<const KeyType&> inner_matcher_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(KeyMatcherImpl);
|
|
};
|
|
|
|
// Implements polymorphic Key(matcher_for_key).
|
|
template <typename M>
|
|
class KeyMatcher {
|
|
public:
|
|
explicit KeyMatcher(M m) : matcher_for_key_(m) {}
|
|
|
|
template <typename PairType>
|
|
operator Matcher<PairType>() const {
|
|
return Matcher<PairType>(
|
|
new KeyMatcherImpl<const PairType&>(matcher_for_key_));
|
|
}
|
|
|
|
private:
|
|
const M matcher_for_key_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(KeyMatcher);
|
|
};
|
|
|
|
// Implements Pair(first_matcher, second_matcher) for the given argument pair
|
|
// type with its two matchers. See Pair() function below.
|
|
template <typename PairType>
|
|
class PairMatcherImpl : public MatcherInterface<PairType> {
|
|
public:
|
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
|
|
typedef typename RawPairType::first_type FirstType;
|
|
typedef typename RawPairType::second_type SecondType;
|
|
|
|
template <typename FirstMatcher, typename SecondMatcher>
|
|
PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
|
|
: first_matcher_(
|
|
testing::SafeMatcherCast<const FirstType&>(first_matcher)),
|
|
second_matcher_(
|
|
testing::SafeMatcherCast<const SecondType&>(second_matcher)) {
|
|
}
|
|
|
|
// Describes what this matcher does.
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "has a first field that ";
|
|
first_matcher_.DescribeTo(os);
|
|
*os << ", and has a second field that ";
|
|
second_matcher_.DescribeTo(os);
|
|
}
|
|
|
|
// Describes what the negation of this matcher does.
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "has a first field that ";
|
|
first_matcher_.DescribeNegationTo(os);
|
|
*os << ", or has a second field that ";
|
|
second_matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
// Returns true if and only if 'a_pair.first' matches first_matcher and
|
|
// 'a_pair.second' matches second_matcher.
|
|
bool MatchAndExplain(PairType a_pair,
|
|
MatchResultListener* listener) const override {
|
|
if (!listener->IsInterested()) {
|
|
// If the listener is not interested, we don't need to construct the
|
|
// explanation.
|
|
return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) &&
|
|
second_matcher_.Matches(pair_getters::Second(a_pair, Rank0()));
|
|
}
|
|
StringMatchResultListener first_inner_listener;
|
|
if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()),
|
|
&first_inner_listener)) {
|
|
*listener << "whose first field does not match";
|
|
PrintIfNotEmpty(first_inner_listener.str(), listener->stream());
|
|
return false;
|
|
}
|
|
StringMatchResultListener second_inner_listener;
|
|
if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()),
|
|
&second_inner_listener)) {
|
|
*listener << "whose second field does not match";
|
|
PrintIfNotEmpty(second_inner_listener.str(), listener->stream());
|
|
return false;
|
|
}
|
|
ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(),
|
|
listener);
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
void ExplainSuccess(const std::string& first_explanation,
|
|
const std::string& second_explanation,
|
|
MatchResultListener* listener) const {
|
|
*listener << "whose both fields match";
|
|
if (first_explanation != "") {
|
|
*listener << ", where the first field is a value " << first_explanation;
|
|
}
|
|
if (second_explanation != "") {
|
|
*listener << ", ";
|
|
if (first_explanation != "") {
|
|
*listener << "and ";
|
|
} else {
|
|
*listener << "where ";
|
|
}
|
|
*listener << "the second field is a value " << second_explanation;
|
|
}
|
|
}
|
|
|
|
const Matcher<const FirstType&> first_matcher_;
|
|
const Matcher<const SecondType&> second_matcher_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(PairMatcherImpl);
|
|
};
|
|
|
|
// Implements polymorphic Pair(first_matcher, second_matcher).
|
|
template <typename FirstMatcher, typename SecondMatcher>
|
|
class PairMatcher {
|
|
public:
|
|
PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
|
|
: first_matcher_(first_matcher), second_matcher_(second_matcher) {}
|
|
|
|
template <typename PairType>
|
|
operator Matcher<PairType> () const {
|
|
return Matcher<PairType>(
|
|
new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_));
|
|
}
|
|
|
|
private:
|
|
const FirstMatcher first_matcher_;
|
|
const SecondMatcher second_matcher_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(PairMatcher);
|
|
};
|
|
|
|
// Implements ElementsAre() and ElementsAreArray().
|
|
template <typename Container>
|
|
class ElementsAreMatcherImpl : public MatcherInterface<Container> {
|
|
public:
|
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
|
|
typedef internal::StlContainerView<RawContainer> View;
|
|
typedef typename View::type StlContainer;
|
|
typedef typename View::const_reference StlContainerReference;
|
|
typedef typename StlContainer::value_type Element;
|
|
|
|
// Constructs the matcher from a sequence of element values or
|
|
// element matchers.
|
|
template <typename InputIter>
|
|
ElementsAreMatcherImpl(InputIter first, InputIter last) {
|
|
while (first != last) {
|
|
matchers_.push_back(MatcherCast<const Element&>(*first++));
|
|
}
|
|
}
|
|
|
|
// Describes what this matcher does.
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
if (count() == 0) {
|
|
*os << "is empty";
|
|
} else if (count() == 1) {
|
|
*os << "has 1 element that ";
|
|
matchers_[0].DescribeTo(os);
|
|
} else {
|
|
*os << "has " << Elements(count()) << " where\n";
|
|
for (size_t i = 0; i != count(); ++i) {
|
|
*os << "element #" << i << " ";
|
|
matchers_[i].DescribeTo(os);
|
|
if (i + 1 < count()) {
|
|
*os << ",\n";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Describes what the negation of this matcher does.
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
if (count() == 0) {
|
|
*os << "isn't empty";
|
|
return;
|
|
}
|
|
|
|
*os << "doesn't have " << Elements(count()) << ", or\n";
|
|
for (size_t i = 0; i != count(); ++i) {
|
|
*os << "element #" << i << " ";
|
|
matchers_[i].DescribeNegationTo(os);
|
|
if (i + 1 < count()) {
|
|
*os << ", or\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
bool MatchAndExplain(Container container,
|
|
MatchResultListener* listener) const override {
|
|
// To work with stream-like "containers", we must only walk
|
|
// through the elements in one pass.
|
|
|
|
const bool listener_interested = listener->IsInterested();
|
|
|
|
// explanations[i] is the explanation of the element at index i.
|
|
::std::vector<std::string> explanations(count());
|
|
StlContainerReference stl_container = View::ConstReference(container);
|
|
typename StlContainer::const_iterator it = stl_container.begin();
|
|
size_t exam_pos = 0;
|
|
bool mismatch_found = false; // Have we found a mismatched element yet?
|
|
|
|
// Go through the elements and matchers in pairs, until we reach
|
|
// the end of either the elements or the matchers, or until we find a
|
|
// mismatch.
|
|
for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) {
|
|
bool match; // Does the current element match the current matcher?
|
|
if (listener_interested) {
|
|
StringMatchResultListener s;
|
|
match = matchers_[exam_pos].MatchAndExplain(*it, &s);
|
|
explanations[exam_pos] = s.str();
|
|
} else {
|
|
match = matchers_[exam_pos].Matches(*it);
|
|
}
|
|
|
|
if (!match) {
|
|
mismatch_found = true;
|
|
break;
|
|
}
|
|
}
|
|
// If mismatch_found is true, 'exam_pos' is the index of the mismatch.
|
|
|
|
// Find how many elements the actual container has. We avoid
|
|
// calling size() s.t. this code works for stream-like "containers"
|
|
// that don't define size().
|
|
size_t actual_count = exam_pos;
|
|
for (; it != stl_container.end(); ++it) {
|
|
++actual_count;
|
|
}
|
|
|
|
if (actual_count != count()) {
|
|
// The element count doesn't match. If the container is empty,
|
|
// there's no need to explain anything as Google Mock already
|
|
// prints the empty container. Otherwise we just need to show
|
|
// how many elements there actually are.
|
|
if (listener_interested && (actual_count != 0)) {
|
|
*listener << "which has " << Elements(actual_count);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (mismatch_found) {
|
|
// The element count matches, but the exam_pos-th element doesn't match.
|
|
if (listener_interested) {
|
|
*listener << "whose element #" << exam_pos << " doesn't match";
|
|
PrintIfNotEmpty(explanations[exam_pos], listener->stream());
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Every element matches its expectation. We need to explain why
|
|
// (the obvious ones can be skipped).
|
|
if (listener_interested) {
|
|
bool reason_printed = false;
|
|
for (size_t i = 0; i != count(); ++i) {
|
|
const std::string& s = explanations[i];
|
|
if (!s.empty()) {
|
|
if (reason_printed) {
|
|
*listener << ",\nand ";
|
|
}
|
|
*listener << "whose element #" << i << " matches, " << s;
|
|
reason_printed = true;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
static Message Elements(size_t count) {
|
|
return Message() << count << (count == 1 ? " element" : " elements");
|
|
}
|
|
|
|
size_t count() const { return matchers_.size(); }
|
|
|
|
::std::vector<Matcher<const Element&> > matchers_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(ElementsAreMatcherImpl);
|
|
};
|
|
|
|
// Connectivity matrix of (elements X matchers), in element-major order.
|
|
// Initially, there are no edges.
|
|
// Use NextGraph() to iterate over all possible edge configurations.
|
|
// Use Randomize() to generate a random edge configuration.
|
|
class GTEST_API_ MatchMatrix {
|
|
public:
|
|
MatchMatrix(size_t num_elements, size_t num_matchers)
|
|
: num_elements_(num_elements),
|
|
num_matchers_(num_matchers),
|
|
matched_(num_elements_* num_matchers_, 0) {
|
|
}
|
|
|
|
size_t LhsSize() const { return num_elements_; }
|
|
size_t RhsSize() const { return num_matchers_; }
|
|
bool HasEdge(size_t ilhs, size_t irhs) const {
|
|
return matched_[SpaceIndex(ilhs, irhs)] == 1;
|
|
}
|
|
void SetEdge(size_t ilhs, size_t irhs, bool b) {
|
|
matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0;
|
|
}
|
|
|
|
// Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number,
|
|
// adds 1 to that number; returns false if incrementing the graph left it
|
|
// empty.
|
|
bool NextGraph();
|
|
|
|
void Randomize();
|
|
|
|
std::string DebugString() const;
|
|
|
|
private:
|
|
size_t SpaceIndex(size_t ilhs, size_t irhs) const {
|
|
return ilhs * num_matchers_ + irhs;
|
|
}
|
|
|
|
size_t num_elements_;
|
|
size_t num_matchers_;
|
|
|
|
// Each element is a char interpreted as bool. They are stored as a
|
|
// flattened array in lhs-major order, use 'SpaceIndex()' to translate
|
|
// a (ilhs, irhs) matrix coordinate into an offset.
|
|
::std::vector<char> matched_;
|
|
};
|
|
|
|
typedef ::std::pair<size_t, size_t> ElementMatcherPair;
|
|
typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs;
|
|
|
|
// Returns a maximum bipartite matching for the specified graph 'g'.
|
|
// The matching is represented as a vector of {element, matcher} pairs.
|
|
GTEST_API_ ElementMatcherPairs
|
|
FindMaxBipartiteMatching(const MatchMatrix& g);
|
|
|
|
struct UnorderedMatcherRequire {
|
|
enum Flags {
|
|
Superset = 1 << 0,
|
|
Subset = 1 << 1,
|
|
ExactMatch = Superset | Subset,
|
|
};
|
|
};
|
|
|
|
// Untyped base class for implementing UnorderedElementsAre. By
|
|
// putting logic that's not specific to the element type here, we
|
|
// reduce binary bloat and increase compilation speed.
|
|
class GTEST_API_ UnorderedElementsAreMatcherImplBase {
|
|
protected:
|
|
explicit UnorderedElementsAreMatcherImplBase(
|
|
UnorderedMatcherRequire::Flags matcher_flags)
|
|
: match_flags_(matcher_flags) {}
|
|
|
|
// A vector of matcher describers, one for each element matcher.
|
|
// Does not own the describers (and thus can be used only when the
|
|
// element matchers are alive).
|
|
typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec;
|
|
|
|
// Describes this UnorderedElementsAre matcher.
|
|
void DescribeToImpl(::std::ostream* os) const;
|
|
|
|
// Describes the negation of this UnorderedElementsAre matcher.
|
|
void DescribeNegationToImpl(::std::ostream* os) const;
|
|
|
|
bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts,
|
|
const MatchMatrix& matrix,
|
|
MatchResultListener* listener) const;
|
|
|
|
bool FindPairing(const MatchMatrix& matrix,
|
|
MatchResultListener* listener) const;
|
|
|
|
MatcherDescriberVec& matcher_describers() {
|
|
return matcher_describers_;
|
|
}
|
|
|
|
static Message Elements(size_t n) {
|
|
return Message() << n << " element" << (n == 1 ? "" : "s");
|
|
}
|
|
|
|
UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; }
|
|
|
|
private:
|
|
UnorderedMatcherRequire::Flags match_flags_;
|
|
MatcherDescriberVec matcher_describers_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcherImplBase);
|
|
};
|
|
|
|
// Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and
|
|
// IsSupersetOf.
|
|
template <typename Container>
|
|
class UnorderedElementsAreMatcherImpl
|
|
: public MatcherInterface<Container>,
|
|
public UnorderedElementsAreMatcherImplBase {
|
|
public:
|
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
|
|
typedef internal::StlContainerView<RawContainer> View;
|
|
typedef typename View::type StlContainer;
|
|
typedef typename View::const_reference StlContainerReference;
|
|
typedef typename StlContainer::const_iterator StlContainerConstIterator;
|
|
typedef typename StlContainer::value_type Element;
|
|
|
|
template <typename InputIter>
|
|
UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags,
|
|
InputIter first, InputIter last)
|
|
: UnorderedElementsAreMatcherImplBase(matcher_flags) {
|
|
for (; first != last; ++first) {
|
|
matchers_.push_back(MatcherCast<const Element&>(*first));
|
|
matcher_describers().push_back(matchers_.back().GetDescriber());
|
|
}
|
|
}
|
|
|
|
// Describes what this matcher does.
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os);
|
|
}
|
|
|
|
// Describes what the negation of this matcher does.
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os);
|
|
}
|
|
|
|
bool MatchAndExplain(Container container,
|
|
MatchResultListener* listener) const override {
|
|
StlContainerReference stl_container = View::ConstReference(container);
|
|
::std::vector<std::string> element_printouts;
|
|
MatchMatrix matrix =
|
|
AnalyzeElements(stl_container.begin(), stl_container.end(),
|
|
&element_printouts, listener);
|
|
|
|
if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) {
|
|
return true;
|
|
}
|
|
|
|
if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
|
|
if (matrix.LhsSize() != matrix.RhsSize()) {
|
|
// The element count doesn't match. If the container is empty,
|
|
// there's no need to explain anything as Google Mock already
|
|
// prints the empty container. Otherwise we just need to show
|
|
// how many elements there actually are.
|
|
if (matrix.LhsSize() != 0 && listener->IsInterested()) {
|
|
*listener << "which has " << Elements(matrix.LhsSize());
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return VerifyMatchMatrix(element_printouts, matrix, listener) &&
|
|
FindPairing(matrix, listener);
|
|
}
|
|
|
|
private:
|
|
template <typename ElementIter>
|
|
MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last,
|
|
::std::vector<std::string>* element_printouts,
|
|
MatchResultListener* listener) const {
|
|
element_printouts->clear();
|
|
::std::vector<char> did_match;
|
|
size_t num_elements = 0;
|
|
DummyMatchResultListener dummy;
|
|
for (; elem_first != elem_last; ++num_elements, ++elem_first) {
|
|
if (listener->IsInterested()) {
|
|
element_printouts->push_back(PrintToString(*elem_first));
|
|
}
|
|
for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
|
|
did_match.push_back(
|
|
matchers_[irhs].MatchAndExplain(*elem_first, &dummy));
|
|
}
|
|
}
|
|
|
|
MatchMatrix matrix(num_elements, matchers_.size());
|
|
::std::vector<char>::const_iterator did_match_iter = did_match.begin();
|
|
for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) {
|
|
for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
|
|
matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0);
|
|
}
|
|
}
|
|
return matrix;
|
|
}
|
|
|
|
::std::vector<Matcher<const Element&> > matchers_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcherImpl);
|
|
};
|
|
|
|
// Functor for use in TransformTuple.
|
|
// Performs MatcherCast<Target> on an input argument of any type.
|
|
template <typename Target>
|
|
struct CastAndAppendTransform {
|
|
template <typename Arg>
|
|
Matcher<Target> operator()(const Arg& a) const {
|
|
return MatcherCast<Target>(a);
|
|
}
|
|
};
|
|
|
|
// Implements UnorderedElementsAre.
|
|
template <typename MatcherTuple>
|
|
class UnorderedElementsAreMatcher {
|
|
public:
|
|
explicit UnorderedElementsAreMatcher(const MatcherTuple& args)
|
|
: matchers_(args) {}
|
|
|
|
template <typename Container>
|
|
operator Matcher<Container>() const {
|
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
|
|
typedef typename internal::StlContainerView<RawContainer>::type View;
|
|
typedef typename View::value_type Element;
|
|
typedef ::std::vector<Matcher<const Element&> > MatcherVec;
|
|
MatcherVec matchers;
|
|
matchers.reserve(::std::tuple_size<MatcherTuple>::value);
|
|
TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
|
|
::std::back_inserter(matchers));
|
|
return Matcher<Container>(
|
|
new UnorderedElementsAreMatcherImpl<const Container&>(
|
|
UnorderedMatcherRequire::ExactMatch, matchers.begin(),
|
|
matchers.end()));
|
|
}
|
|
|
|
private:
|
|
const MatcherTuple matchers_;
|
|
GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcher);
|
|
};
|
|
|
|
// Implements ElementsAre.
|
|
template <typename MatcherTuple>
|
|
class ElementsAreMatcher {
|
|
public:
|
|
explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {}
|
|
|
|
template <typename Container>
|
|
operator Matcher<Container>() const {
|
|
GTEST_COMPILE_ASSERT_(
|
|
!IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value ||
|
|
::std::tuple_size<MatcherTuple>::value < 2,
|
|
use_UnorderedElementsAre_with_hash_tables);
|
|
|
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
|
|
typedef typename internal::StlContainerView<RawContainer>::type View;
|
|
typedef typename View::value_type Element;
|
|
typedef ::std::vector<Matcher<const Element&> > MatcherVec;
|
|
MatcherVec matchers;
|
|
matchers.reserve(::std::tuple_size<MatcherTuple>::value);
|
|
TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
|
|
::std::back_inserter(matchers));
|
|
return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
|
|
matchers.begin(), matchers.end()));
|
|
}
|
|
|
|
private:
|
|
const MatcherTuple matchers_;
|
|
GTEST_DISALLOW_ASSIGN_(ElementsAreMatcher);
|
|
};
|
|
|
|
// Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf().
|
|
template <typename T>
|
|
class UnorderedElementsAreArrayMatcher {
|
|
public:
|
|
template <typename Iter>
|
|
UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags,
|
|
Iter first, Iter last)
|
|
: match_flags_(match_flags), matchers_(first, last) {}
|
|
|
|
template <typename Container>
|
|
operator Matcher<Container>() const {
|
|
return Matcher<Container>(
|
|
new UnorderedElementsAreMatcherImpl<const Container&>(
|
|
match_flags_, matchers_.begin(), matchers_.end()));
|
|
}
|
|
|
|
private:
|
|
UnorderedMatcherRequire::Flags match_flags_;
|
|
::std::vector<T> matchers_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreArrayMatcher);
|
|
};
|
|
|
|
// Implements ElementsAreArray().
|
|
template <typename T>
|
|
class ElementsAreArrayMatcher {
|
|
public:
|
|
template <typename Iter>
|
|
ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
|
|
|
|
template <typename Container>
|
|
operator Matcher<Container>() const {
|
|
GTEST_COMPILE_ASSERT_(
|
|
!IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value,
|
|
use_UnorderedElementsAreArray_with_hash_tables);
|
|
|
|
return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
|
|
matchers_.begin(), matchers_.end()));
|
|
}
|
|
|
|
private:
|
|
const ::std::vector<T> matchers_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(ElementsAreArrayMatcher);
|
|
};
|
|
|
|
// Given a 2-tuple matcher tm of type Tuple2Matcher and a value second
|
|
// of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm,
|
|
// second) is a polymorphic matcher that matches a value x if and only if
|
|
// tm matches tuple (x, second). Useful for implementing
|
|
// UnorderedPointwise() in terms of UnorderedElementsAreArray().
|
|
//
|
|
// BoundSecondMatcher is copyable and assignable, as we need to put
|
|
// instances of this class in a vector when implementing
|
|
// UnorderedPointwise().
|
|
template <typename Tuple2Matcher, typename Second>
|
|
class BoundSecondMatcher {
|
|
public:
|
|
BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second)
|
|
: tuple2_matcher_(tm), second_value_(second) {}
|
|
|
|
template <typename T>
|
|
operator Matcher<T>() const {
|
|
return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_));
|
|
}
|
|
|
|
// We have to define this for UnorderedPointwise() to compile in
|
|
// C++98 mode, as it puts BoundSecondMatcher instances in a vector,
|
|
// which requires the elements to be assignable in C++98. The
|
|
// compiler cannot generate the operator= for us, as Tuple2Matcher
|
|
// and Second may not be assignable.
|
|
//
|
|
// However, this should never be called, so the implementation just
|
|
// need to assert.
|
|
void operator=(const BoundSecondMatcher& /*rhs*/) {
|
|
GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned.";
|
|
}
|
|
|
|
private:
|
|
template <typename T>
|
|
class Impl : public MatcherInterface<T> {
|
|
public:
|
|
typedef ::std::tuple<T, Second> ArgTuple;
|
|
|
|
Impl(const Tuple2Matcher& tm, const Second& second)
|
|
: mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)),
|
|
second_value_(second) {}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "and ";
|
|
UniversalPrint(second_value_, os);
|
|
*os << " ";
|
|
mono_tuple2_matcher_.DescribeTo(os);
|
|
}
|
|
|
|
bool MatchAndExplain(T x, MatchResultListener* listener) const override {
|
|
return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_),
|
|
listener);
|
|
}
|
|
|
|
private:
|
|
const Matcher<const ArgTuple&> mono_tuple2_matcher_;
|
|
const Second second_value_;
|
|
|
|
GTEST_DISALLOW_ASSIGN_(Impl);
|
|
};
|
|
|
|
const Tuple2Matcher tuple2_matcher_;
|
|
const Second second_value_;
|
|
};
|
|
|
|
// Given a 2-tuple matcher tm and a value second,
|
|
// MatcherBindSecond(tm, second) returns a matcher that matches a
|
|
// value x if and only if tm matches tuple (x, second). Useful for
|
|
// implementing UnorderedPointwise() in terms of UnorderedElementsAreArray().
|
|
template <typename Tuple2Matcher, typename Second>
|
|
BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond(
|
|
const Tuple2Matcher& tm, const Second& second) {
|
|
return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second);
|
|
}
|
|
|
|
// Returns the description for a matcher defined using the MATCHER*()
|
|
// macro where the user-supplied description string is "", if
|
|
// 'negation' is false; otherwise returns the description of the
|
|
// negation of the matcher. 'param_values' contains a list of strings
|
|
// that are the print-out of the matcher's parameters.
|
|
GTEST_API_ std::string FormatMatcherDescription(bool negation,
|
|
const char* matcher_name,
|
|
const Strings& param_values);
|
|
|
|
// Implements a matcher that checks the value of a optional<> type variable.
|
|
template <typename ValueMatcher>
|
|
class OptionalMatcher {
|
|
public:
|
|
explicit OptionalMatcher(const ValueMatcher& value_matcher)
|
|
: value_matcher_(value_matcher) {}
|
|
|
|
template <typename Optional>
|
|
operator Matcher<Optional>() const {
|
|
return Matcher<Optional>(new Impl<const Optional&>(value_matcher_));
|
|
}
|
|
|
|
template <typename Optional>
|
|
class Impl : public MatcherInterface<Optional> {
|
|
public:
|
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView;
|
|
typedef typename OptionalView::value_type ValueType;
|
|
explicit Impl(const ValueMatcher& value_matcher)
|
|
: value_matcher_(MatcherCast<ValueType>(value_matcher)) {}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "value ";
|
|
value_matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "value ";
|
|
value_matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
bool MatchAndExplain(Optional optional,
|
|
MatchResultListener* listener) const override {
|
|
if (!optional) {
|
|
*listener << "which is not engaged";
|
|
return false;
|
|
}
|
|
const ValueType& value = *optional;
|
|
StringMatchResultListener value_listener;
|
|
const bool match = value_matcher_.MatchAndExplain(value, &value_listener);
|
|
*listener << "whose value " << PrintToString(value)
|
|
<< (match ? " matches" : " doesn't match");
|
|
PrintIfNotEmpty(value_listener.str(), listener->stream());
|
|
return match;
|
|
}
|
|
|
|
private:
|
|
const Matcher<ValueType> value_matcher_;
|
|
GTEST_DISALLOW_ASSIGN_(Impl);
|
|
};
|
|
|
|
private:
|
|
const ValueMatcher value_matcher_;
|
|
GTEST_DISALLOW_ASSIGN_(OptionalMatcher);
|
|
};
|
|
|
|
namespace variant_matcher {
|
|
// Overloads to allow VariantMatcher to do proper ADL lookup.
|
|
template <typename T>
|
|
void holds_alternative() {}
|
|
template <typename T>
|
|
void get() {}
|
|
|
|
// Implements a matcher that checks the value of a variant<> type variable.
|
|
template <typename T>
|
|
class VariantMatcher {
|
|
public:
|
|
explicit VariantMatcher(::testing::Matcher<const T&> matcher)
|
|
: matcher_(std::move(matcher)) {}
|
|
|
|
template <typename Variant>
|
|
bool MatchAndExplain(const Variant& value,
|
|
::testing::MatchResultListener* listener) const {
|
|
using std::get;
|
|
if (!listener->IsInterested()) {
|
|
return holds_alternative<T>(value) && matcher_.Matches(get<T>(value));
|
|
}
|
|
|
|
if (!holds_alternative<T>(value)) {
|
|
*listener << "whose value is not of type '" << GetTypeName() << "'";
|
|
return false;
|
|
}
|
|
|
|
const T& elem = get<T>(value);
|
|
StringMatchResultListener elem_listener;
|
|
const bool match = matcher_.MatchAndExplain(elem, &elem_listener);
|
|
*listener << "whose value " << PrintToString(elem)
|
|
<< (match ? " matches" : " doesn't match");
|
|
PrintIfNotEmpty(elem_listener.str(), listener->stream());
|
|
return match;
|
|
}
|
|
|
|
void DescribeTo(std::ostream* os) const {
|
|
*os << "is a variant<> with value of type '" << GetTypeName()
|
|
<< "' and the value ";
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(std::ostream* os) const {
|
|
*os << "is a variant<> with value of type other than '" << GetTypeName()
|
|
<< "' or the value ";
|
|
matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
private:
|
|
static std::string GetTypeName() {
|
|
#if GTEST_HAS_RTTI
|
|
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
|
|
return internal::GetTypeName<T>());
|
|
#endif
|
|
return "the element type";
|
|
}
|
|
|
|
const ::testing::Matcher<const T&> matcher_;
|
|
};
|
|
|
|
} // namespace variant_matcher
|
|
|
|
namespace any_cast_matcher {
|
|
|
|
// Overloads to allow AnyCastMatcher to do proper ADL lookup.
|
|
template <typename T>
|
|
void any_cast() {}
|
|
|
|
// Implements a matcher that any_casts the value.
|
|
template <typename T>
|
|
class AnyCastMatcher {
|
|
public:
|
|
explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher)
|
|
: matcher_(matcher) {}
|
|
|
|
template <typename AnyType>
|
|
bool MatchAndExplain(const AnyType& value,
|
|
::testing::MatchResultListener* listener) const {
|
|
if (!listener->IsInterested()) {
|
|
const T* ptr = any_cast<T>(&value);
|
|
return ptr != nullptr && matcher_.Matches(*ptr);
|
|
}
|
|
|
|
const T* elem = any_cast<T>(&value);
|
|
if (elem == nullptr) {
|
|
*listener << "whose value is not of type '" << GetTypeName() << "'";
|
|
return false;
|
|
}
|
|
|
|
StringMatchResultListener elem_listener;
|
|
const bool match = matcher_.MatchAndExplain(*elem, &elem_listener);
|
|
*listener << "whose value " << PrintToString(*elem)
|
|
<< (match ? " matches" : " doesn't match");
|
|
PrintIfNotEmpty(elem_listener.str(), listener->stream());
|
|
return match;
|
|
}
|
|
|
|
void DescribeTo(std::ostream* os) const {
|
|
*os << "is an 'any' type with value of type '" << GetTypeName()
|
|
<< "' and the value ";
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(std::ostream* os) const {
|
|
*os << "is an 'any' type with value of type other than '" << GetTypeName()
|
|
<< "' or the value ";
|
|
matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
private:
|
|
static std::string GetTypeName() {
|
|
#if GTEST_HAS_RTTI
|
|
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
|
|
return internal::GetTypeName<T>());
|
|
#endif
|
|
return "the element type";
|
|
}
|
|
|
|
const ::testing::Matcher<const T&> matcher_;
|
|
};
|
|
|
|
} // namespace any_cast_matcher
|
|
|
|
// Implements the Args() matcher.
|
|
template <class ArgsTuple, size_t... k>
|
|
class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> {
|
|
public:
|
|
using RawArgsTuple = typename std::decay<ArgsTuple>::type;
|
|
using SelectedArgs =
|
|
std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>;
|
|
using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>;
|
|
|
|
template <typename InnerMatcher>
|
|
explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher)
|
|
: inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {}
|
|
|
|
bool MatchAndExplain(ArgsTuple args,
|
|
MatchResultListener* listener) const override {
|
|
// Workaround spurious C4100 on MSVC<=15.7 when k is empty.
|
|
(void)args;
|
|
const SelectedArgs& selected_args =
|
|
std::forward_as_tuple(std::get<k>(args)...);
|
|
if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args);
|
|
|
|
PrintIndices(listener->stream());
|
|
*listener << "are " << PrintToString(selected_args);
|
|
|
|
StringMatchResultListener inner_listener;
|
|
const bool match =
|
|
inner_matcher_.MatchAndExplain(selected_args, &inner_listener);
|
|
PrintIfNotEmpty(inner_listener.str(), listener->stream());
|
|
return match;
|
|
}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "are a tuple ";
|
|
PrintIndices(os);
|
|
inner_matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "are a tuple ";
|
|
PrintIndices(os);
|
|
inner_matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
private:
|
|
// Prints the indices of the selected fields.
|
|
static void PrintIndices(::std::ostream* os) {
|
|
*os << "whose fields (";
|
|
const char* sep = "";
|
|
// Workaround spurious C4189 on MSVC<=15.7 when k is empty.
|
|
(void)sep;
|
|
const char* dummy[] = {"", (*os << sep << "#" << k, sep = ", ")...};
|
|
(void)dummy;
|
|
*os << ") ";
|
|
}
|
|
|
|
MonomorphicInnerMatcher inner_matcher_;
|
|
};
|
|
|
|
template <class InnerMatcher, size_t... k>
|
|
class ArgsMatcher {
|
|
public:
|
|
explicit ArgsMatcher(InnerMatcher inner_matcher)
|
|
: inner_matcher_(std::move(inner_matcher)) {}
|
|
|
|
template <typename ArgsTuple>
|
|
operator Matcher<ArgsTuple>() const { // NOLINT
|
|
return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_));
|
|
}
|
|
|
|
private:
|
|
InnerMatcher inner_matcher_;
|
|
};
|
|
|
|
} // namespace internal
|
|
|
|
// ElementsAreArray(iterator_first, iterator_last)
|
|
// ElementsAreArray(pointer, count)
|
|
// ElementsAreArray(array)
|
|
// ElementsAreArray(container)
|
|
// ElementsAreArray({ e1, e2, ..., en })
|
|
//
|
|
// The ElementsAreArray() functions are like ElementsAre(...), except
|
|
// that they are given a homogeneous sequence rather than taking each
|
|
// element as a function argument. The sequence can be specified as an
|
|
// array, a pointer and count, a vector, an initializer list, or an
|
|
// STL iterator range. In each of these cases, the underlying sequence
|
|
// can be either a sequence of values or a sequence of matchers.
|
|
//
|
|
// All forms of ElementsAreArray() make a copy of the input matcher sequence.
|
|
|
|
template <typename Iter>
|
|
inline internal::ElementsAreArrayMatcher<
|
|
typename ::std::iterator_traits<Iter>::value_type>
|
|
ElementsAreArray(Iter first, Iter last) {
|
|
typedef typename ::std::iterator_traits<Iter>::value_type T;
|
|
return internal::ElementsAreArrayMatcher<T>(first, last);
|
|
}
|
|
|
|
template <typename T>
|
|
inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
|
|
const T* pointer, size_t count) {
|
|
return ElementsAreArray(pointer, pointer + count);
|
|
}
|
|
|
|
template <typename T, size_t N>
|
|
inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
|
|
const T (&array)[N]) {
|
|
return ElementsAreArray(array, N);
|
|
}
|
|
|
|
template <typename Container>
|
|
inline internal::ElementsAreArrayMatcher<typename Container::value_type>
|
|
ElementsAreArray(const Container& container) {
|
|
return ElementsAreArray(container.begin(), container.end());
|
|
}
|
|
|
|
template <typename T>
|
|
inline internal::ElementsAreArrayMatcher<T>
|
|
ElementsAreArray(::std::initializer_list<T> xs) {
|
|
return ElementsAreArray(xs.begin(), xs.end());
|
|
}
|
|
|
|
// UnorderedElementsAreArray(iterator_first, iterator_last)
|
|
// UnorderedElementsAreArray(pointer, count)
|
|
// UnorderedElementsAreArray(array)
|
|
// UnorderedElementsAreArray(container)
|
|
// UnorderedElementsAreArray({ e1, e2, ..., en })
|
|
//
|
|
// UnorderedElementsAreArray() verifies that a bijective mapping onto a
|
|
// collection of matchers exists.
|
|
//
|
|
// The matchers can be specified as an array, a pointer and count, a container,
|
|
// an initializer list, or an STL iterator range. In each of these cases, the
|
|
// underlying matchers can be either values or matchers.
|
|
|
|
template <typename Iter>
|
|
inline internal::UnorderedElementsAreArrayMatcher<
|
|
typename ::std::iterator_traits<Iter>::value_type>
|
|
UnorderedElementsAreArray(Iter first, Iter last) {
|
|
typedef typename ::std::iterator_traits<Iter>::value_type T;
|
|
return internal::UnorderedElementsAreArrayMatcher<T>(
|
|
internal::UnorderedMatcherRequire::ExactMatch, first, last);
|
|
}
|
|
|
|
template <typename T>
|
|
inline internal::UnorderedElementsAreArrayMatcher<T>
|
|
UnorderedElementsAreArray(const T* pointer, size_t count) {
|
|
return UnorderedElementsAreArray(pointer, pointer + count);
|
|
}
|
|
|
|
template <typename T, size_t N>
|
|
inline internal::UnorderedElementsAreArrayMatcher<T>
|
|
UnorderedElementsAreArray(const T (&array)[N]) {
|
|
return UnorderedElementsAreArray(array, N);
|
|
}
|
|
|
|
template <typename Container>
|
|
inline internal::UnorderedElementsAreArrayMatcher<
|
|
typename Container::value_type>
|
|
UnorderedElementsAreArray(const Container& container) {
|
|
return UnorderedElementsAreArray(container.begin(), container.end());
|
|
}
|
|
|
|
template <typename T>
|
|
inline internal::UnorderedElementsAreArrayMatcher<T>
|
|
UnorderedElementsAreArray(::std::initializer_list<T> xs) {
|
|
return UnorderedElementsAreArray(xs.begin(), xs.end());
|
|
}
|
|
|
|
// _ is a matcher that matches anything of any type.
|
|
//
|
|
// This definition is fine as:
|
|
//
|
|
// 1. The C++ standard permits using the name _ in a namespace that
|
|
// is not the global namespace or ::std.
|
|
// 2. The AnythingMatcher class has no data member or constructor,
|
|
// so it's OK to create global variables of this type.
|
|
// 3. c-style has approved of using _ in this case.
|
|
const internal::AnythingMatcher _ = {};
|
|
// Creates a matcher that matches any value of the given type T.
|
|
template <typename T>
|
|
inline Matcher<T> A() {
|
|
return Matcher<T>(new internal::AnyMatcherImpl<T>());
|
|
}
|
|
|
|
// Creates a matcher that matches any value of the given type T.
|
|
template <typename T>
|
|
inline Matcher<T> An() { return A<T>(); }
|
|
|
|
template <typename T, typename M>
|
|
Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl(
|
|
const M& value, std::false_type /* convertible_to_matcher */,
|
|
std::false_type /* convertible_to_T */) {
|
|
return Eq(value);
|
|
}
|
|
|
|
// Creates a polymorphic matcher that matches any NULL pointer.
|
|
inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() {
|
|
return MakePolymorphicMatcher(internal::IsNullMatcher());
|
|
}
|
|
|
|
// Creates a polymorphic matcher that matches any non-NULL pointer.
|
|
// This is convenient as Not(NULL) doesn't compile (the compiler
|
|
// thinks that that expression is comparing a pointer with an integer).
|
|
inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() {
|
|
return MakePolymorphicMatcher(internal::NotNullMatcher());
|
|
}
|
|
|
|
// Creates a polymorphic matcher that matches any argument that
|
|
// references variable x.
|
|
template <typename T>
|
|
inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT
|
|
return internal::RefMatcher<T&>(x);
|
|
}
|
|
|
|
// Creates a polymorphic matcher that matches any NaN floating point.
|
|
inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() {
|
|
return MakePolymorphicMatcher(internal::IsNanMatcher());
|
|
}
|
|
|
|
// Creates a matcher that matches any double argument approximately
|
|
// equal to rhs, where two NANs are considered unequal.
|
|
inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
|
|
return internal::FloatingEqMatcher<double>(rhs, false);
|
|
}
|
|
|
|
// Creates a matcher that matches any double argument approximately
|
|
// equal to rhs, including NaN values when rhs is NaN.
|
|
inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
|
|
return internal::FloatingEqMatcher<double>(rhs, true);
|
|
}
|
|
|
|
// Creates a matcher that matches any double argument approximately equal to
|
|
// rhs, up to the specified max absolute error bound, where two NANs are
|
|
// considered unequal. The max absolute error bound must be non-negative.
|
|
inline internal::FloatingEqMatcher<double> DoubleNear(
|
|
double rhs, double max_abs_error) {
|
|
return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error);
|
|
}
|
|
|
|
// Creates a matcher that matches any double argument approximately equal to
|
|
// rhs, up to the specified max absolute error bound, including NaN values when
|
|
// rhs is NaN. The max absolute error bound must be non-negative.
|
|
inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear(
|
|
double rhs, double max_abs_error) {
|
|
return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error);
|
|
}
|
|
|
|
// Creates a matcher that matches any float argument approximately
|
|
// equal to rhs, where two NANs are considered unequal.
|
|
inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
|
|
return internal::FloatingEqMatcher<float>(rhs, false);
|
|
}
|
|
|
|
// Creates a matcher that matches any float argument approximately
|
|
// equal to rhs, including NaN values when rhs is NaN.
|
|
inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
|
|
return internal::FloatingEqMatcher<float>(rhs, true);
|
|
}
|
|
|
|
// Creates a matcher that matches any float argument approximately equal to
|
|
// rhs, up to the specified max absolute error bound, where two NANs are
|
|
// considered unequal. The max absolute error bound must be non-negative.
|
|
inline internal::FloatingEqMatcher<float> FloatNear(
|
|
float rhs, float max_abs_error) {
|
|
return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error);
|
|
}
|
|
|
|
// Creates a matcher that matches any float argument approximately equal to
|
|
// rhs, up to the specified max absolute error bound, including NaN values when
|
|
// rhs is NaN. The max absolute error bound must be non-negative.
|
|
inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear(
|
|
float rhs, float max_abs_error) {
|
|
return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error);
|
|
}
|
|
|
|
// Creates a matcher that matches a pointer (raw or smart) that points
|
|
// to a value that matches inner_matcher.
|
|
template <typename InnerMatcher>
|
|
inline internal::PointeeMatcher<InnerMatcher> Pointee(
|
|
const InnerMatcher& inner_matcher) {
|
|
return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
|
|
}
|
|
|
|
#if GTEST_HAS_RTTI
|
|
// Creates a matcher that matches a pointer or reference that matches
|
|
// inner_matcher when dynamic_cast<To> is applied.
|
|
// The result of dynamic_cast<To> is forwarded to the inner matcher.
|
|
// If To is a pointer and the cast fails, the inner matcher will receive NULL.
|
|
// If To is a reference and the cast fails, this matcher returns false
|
|
// immediately.
|
|
template <typename To>
|
|
inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To> >
|
|
WhenDynamicCastTo(const Matcher<To>& inner_matcher) {
|
|
return MakePolymorphicMatcher(
|
|
internal::WhenDynamicCastToMatcher<To>(inner_matcher));
|
|
}
|
|
#endif // GTEST_HAS_RTTI
|
|
|
|
// Creates a matcher that matches an object whose given field matches
|
|
// 'matcher'. For example,
|
|
// Field(&Foo::number, Ge(5))
|
|
// matches a Foo object x if and only if x.number >= 5.
|
|
template <typename Class, typename FieldType, typename FieldMatcher>
|
|
inline PolymorphicMatcher<
|
|
internal::FieldMatcher<Class, FieldType> > Field(
|
|
FieldType Class::*field, const FieldMatcher& matcher) {
|
|
return MakePolymorphicMatcher(
|
|
internal::FieldMatcher<Class, FieldType>(
|
|
field, MatcherCast<const FieldType&>(matcher)));
|
|
// The call to MatcherCast() is required for supporting inner
|
|
// matchers of compatible types. For example, it allows
|
|
// Field(&Foo::bar, m)
|
|
// to compile where bar is an int32 and m is a matcher for int64.
|
|
}
|
|
|
|
// Same as Field() but also takes the name of the field to provide better error
|
|
// messages.
|
|
template <typename Class, typename FieldType, typename FieldMatcher>
|
|
inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType> > Field(
|
|
const std::string& field_name, FieldType Class::*field,
|
|
const FieldMatcher& matcher) {
|
|
return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>(
|
|
field_name, field, MatcherCast<const FieldType&>(matcher)));
|
|
}
|
|
|
|
// Creates a matcher that matches an object whose given property
|
|
// matches 'matcher'. For example,
|
|
// Property(&Foo::str, StartsWith("hi"))
|
|
// matches a Foo object x if and only if x.str() starts with "hi".
|
|
template <typename Class, typename PropertyType, typename PropertyMatcher>
|
|
inline PolymorphicMatcher<internal::PropertyMatcher<
|
|
Class, PropertyType, PropertyType (Class::*)() const> >
|
|
Property(PropertyType (Class::*property)() const,
|
|
const PropertyMatcher& matcher) {
|
|
return MakePolymorphicMatcher(
|
|
internal::PropertyMatcher<Class, PropertyType,
|
|
PropertyType (Class::*)() const>(
|
|
property, MatcherCast<const PropertyType&>(matcher)));
|
|
// The call to MatcherCast() is required for supporting inner
|
|
// matchers of compatible types. For example, it allows
|
|
// Property(&Foo::bar, m)
|
|
// to compile where bar() returns an int32 and m is a matcher for int64.
|
|
}
|
|
|
|
// Same as Property() above, but also takes the name of the property to provide
|
|
// better error messages.
|
|
template <typename Class, typename PropertyType, typename PropertyMatcher>
|
|
inline PolymorphicMatcher<internal::PropertyMatcher<
|
|
Class, PropertyType, PropertyType (Class::*)() const> >
|
|
Property(const std::string& property_name,
|
|
PropertyType (Class::*property)() const,
|
|
const PropertyMatcher& matcher) {
|
|
return MakePolymorphicMatcher(
|
|
internal::PropertyMatcher<Class, PropertyType,
|
|
PropertyType (Class::*)() const>(
|
|
property_name, property, MatcherCast<const PropertyType&>(matcher)));
|
|
}
|
|
|
|
// The same as above but for reference-qualified member functions.
|
|
template <typename Class, typename PropertyType, typename PropertyMatcher>
|
|
inline PolymorphicMatcher<internal::PropertyMatcher<
|
|
Class, PropertyType, PropertyType (Class::*)() const &> >
|
|
Property(PropertyType (Class::*property)() const &,
|
|
const PropertyMatcher& matcher) {
|
|
return MakePolymorphicMatcher(
|
|
internal::PropertyMatcher<Class, PropertyType,
|
|
PropertyType (Class::*)() const&>(
|
|
property, MatcherCast<const PropertyType&>(matcher)));
|
|
}
|
|
|
|
// Three-argument form for reference-qualified member functions.
|
|
template <typename Class, typename PropertyType, typename PropertyMatcher>
|
|
inline PolymorphicMatcher<internal::PropertyMatcher<
|
|
Class, PropertyType, PropertyType (Class::*)() const &> >
|
|
Property(const std::string& property_name,
|
|
PropertyType (Class::*property)() const &,
|
|
const PropertyMatcher& matcher) {
|
|
return MakePolymorphicMatcher(
|
|
internal::PropertyMatcher<Class, PropertyType,
|
|
PropertyType (Class::*)() const&>(
|
|
property_name, property, MatcherCast<const PropertyType&>(matcher)));
|
|
}
|
|
|
|
// Creates a matcher that matches an object if and only if the result of
|
|
// applying a callable to x matches 'matcher'. For example,
|
|
// ResultOf(f, StartsWith("hi"))
|
|
// matches a Foo object x if and only if f(x) starts with "hi".
|
|
// `callable` parameter can be a function, function pointer, or a functor. It is
|
|
// required to keep no state affecting the results of the calls on it and make
|
|
// no assumptions about how many calls will be made. Any state it keeps must be
|
|
// protected from the concurrent access.
|
|
template <typename Callable, typename InnerMatcher>
|
|
internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf(
|
|
Callable callable, InnerMatcher matcher) {
|
|
return internal::ResultOfMatcher<Callable, InnerMatcher>(
|
|
std::move(callable), std::move(matcher));
|
|
}
|
|
|
|
// String matchers.
|
|
|
|
// Matches a string equal to str.
|
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrEq(
|
|
const std::string& str) {
|
|
return MakePolymorphicMatcher(
|
|
internal::StrEqualityMatcher<std::string>(str, true, true));
|
|
}
|
|
|
|
// Matches a string not equal to str.
|
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrNe(
|
|
const std::string& str) {
|
|
return MakePolymorphicMatcher(
|
|
internal::StrEqualityMatcher<std::string>(str, false, true));
|
|
}
|
|
|
|
// Matches a string equal to str, ignoring case.
|
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseEq(
|
|
const std::string& str) {
|
|
return MakePolymorphicMatcher(
|
|
internal::StrEqualityMatcher<std::string>(str, true, false));
|
|
}
|
|
|
|
// Matches a string not equal to str, ignoring case.
|
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseNe(
|
|
const std::string& str) {
|
|
return MakePolymorphicMatcher(
|
|
internal::StrEqualityMatcher<std::string>(str, false, false));
|
|
}
|
|
|
|
// Creates a matcher that matches any string, std::string, or C string
|
|
// that contains the given substring.
|
|
inline PolymorphicMatcher<internal::HasSubstrMatcher<std::string> > HasSubstr(
|
|
const std::string& substring) {
|
|
return MakePolymorphicMatcher(
|
|
internal::HasSubstrMatcher<std::string>(substring));
|
|
}
|
|
|
|
// Matches a string that starts with 'prefix' (case-sensitive).
|
|
inline PolymorphicMatcher<internal::StartsWithMatcher<std::string> > StartsWith(
|
|
const std::string& prefix) {
|
|
return MakePolymorphicMatcher(
|
|
internal::StartsWithMatcher<std::string>(prefix));
|
|
}
|
|
|
|
// Matches a string that ends with 'suffix' (case-sensitive).
|
|
inline PolymorphicMatcher<internal::EndsWithMatcher<std::string> > EndsWith(
|
|
const std::string& suffix) {
|
|
return MakePolymorphicMatcher(internal::EndsWithMatcher<std::string>(suffix));
|
|
}
|
|
|
|
#if GTEST_HAS_STD_WSTRING
|
|
// Wide string matchers.
|
|
|
|
// Matches a string equal to str.
|
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrEq(
|
|
const std::wstring& str) {
|
|
return MakePolymorphicMatcher(
|
|
internal::StrEqualityMatcher<std::wstring>(str, true, true));
|
|
}
|
|
|
|
// Matches a string not equal to str.
|
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrNe(
|
|
const std::wstring& str) {
|
|
return MakePolymorphicMatcher(
|
|
internal::StrEqualityMatcher<std::wstring>(str, false, true));
|
|
}
|
|
|
|
// Matches a string equal to str, ignoring case.
|
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> >
|
|
StrCaseEq(const std::wstring& str) {
|
|
return MakePolymorphicMatcher(
|
|
internal::StrEqualityMatcher<std::wstring>(str, true, false));
|
|
}
|
|
|
|
// Matches a string not equal to str, ignoring case.
|
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> >
|
|
StrCaseNe(const std::wstring& str) {
|
|
return MakePolymorphicMatcher(
|
|
internal::StrEqualityMatcher<std::wstring>(str, false, false));
|
|
}
|
|
|
|
// Creates a matcher that matches any ::wstring, std::wstring, or C wide string
|
|
// that contains the given substring.
|
|
inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring> > HasSubstr(
|
|
const std::wstring& substring) {
|
|
return MakePolymorphicMatcher(
|
|
internal::HasSubstrMatcher<std::wstring>(substring));
|
|
}
|
|
|
|
// Matches a string that starts with 'prefix' (case-sensitive).
|
|
inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring> >
|
|
StartsWith(const std::wstring& prefix) {
|
|
return MakePolymorphicMatcher(
|
|
internal::StartsWithMatcher<std::wstring>(prefix));
|
|
}
|
|
|
|
// Matches a string that ends with 'suffix' (case-sensitive).
|
|
inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring> > EndsWith(
|
|
const std::wstring& suffix) {
|
|
return MakePolymorphicMatcher(
|
|
internal::EndsWithMatcher<std::wstring>(suffix));
|
|
}
|
|
|
|
#endif // GTEST_HAS_STD_WSTRING
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the
|
|
// first field == the second field.
|
|
inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the
|
|
// first field >= the second field.
|
|
inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the
|
|
// first field > the second field.
|
|
inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the
|
|
// first field <= the second field.
|
|
inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the
|
|
// first field < the second field.
|
|
inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the
|
|
// first field != the second field.
|
|
inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where
|
|
// FloatEq(first field) matches the second field.
|
|
inline internal::FloatingEq2Matcher<float> FloatEq() {
|
|
return internal::FloatingEq2Matcher<float>();
|
|
}
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where
|
|
// DoubleEq(first field) matches the second field.
|
|
inline internal::FloatingEq2Matcher<double> DoubleEq() {
|
|
return internal::FloatingEq2Matcher<double>();
|
|
}
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where
|
|
// FloatEq(first field) matches the second field with NaN equality.
|
|
inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() {
|
|
return internal::FloatingEq2Matcher<float>(true);
|
|
}
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where
|
|
// DoubleEq(first field) matches the second field with NaN equality.
|
|
inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() {
|
|
return internal::FloatingEq2Matcher<double>(true);
|
|
}
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where
|
|
// FloatNear(first field, max_abs_error) matches the second field.
|
|
inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) {
|
|
return internal::FloatingEq2Matcher<float>(max_abs_error);
|
|
}
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where
|
|
// DoubleNear(first field, max_abs_error) matches the second field.
|
|
inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) {
|
|
return internal::FloatingEq2Matcher<double>(max_abs_error);
|
|
}
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where
|
|
// FloatNear(first field, max_abs_error) matches the second field with NaN
|
|
// equality.
|
|
inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear(
|
|
float max_abs_error) {
|
|
return internal::FloatingEq2Matcher<float>(max_abs_error, true);
|
|
}
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where
|
|
// DoubleNear(first field, max_abs_error) matches the second field with NaN
|
|
// equality.
|
|
inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear(
|
|
double max_abs_error) {
|
|
return internal::FloatingEq2Matcher<double>(max_abs_error, true);
|
|
}
|
|
|
|
// Creates a matcher that matches any value of type T that m doesn't
|
|
// match.
|
|
template <typename InnerMatcher>
|
|
inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
|
|
return internal::NotMatcher<InnerMatcher>(m);
|
|
}
|
|
|
|
// Returns a matcher that matches anything that satisfies the given
|
|
// predicate. The predicate can be any unary function or functor
|
|
// whose return type can be implicitly converted to bool.
|
|
template <typename Predicate>
|
|
inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> >
|
|
Truly(Predicate pred) {
|
|
return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
|
|
}
|
|
|
|
// Returns a matcher that matches the container size. The container must
|
|
// support both size() and size_type which all STL-like containers provide.
|
|
// Note that the parameter 'size' can be a value of type size_type as well as
|
|
// matcher. For instance:
|
|
// EXPECT_THAT(container, SizeIs(2)); // Checks container has 2 elements.
|
|
// EXPECT_THAT(container, SizeIs(Le(2)); // Checks container has at most 2.
|
|
template <typename SizeMatcher>
|
|
inline internal::SizeIsMatcher<SizeMatcher>
|
|
SizeIs(const SizeMatcher& size_matcher) {
|
|
return internal::SizeIsMatcher<SizeMatcher>(size_matcher);
|
|
}
|
|
|
|
// Returns a matcher that matches the distance between the container's begin()
|
|
// iterator and its end() iterator, i.e. the size of the container. This matcher
|
|
// can be used instead of SizeIs with containers such as std::forward_list which
|
|
// do not implement size(). The container must provide const_iterator (with
|
|
// valid iterator_traits), begin() and end().
|
|
template <typename DistanceMatcher>
|
|
inline internal::BeginEndDistanceIsMatcher<DistanceMatcher>
|
|
BeginEndDistanceIs(const DistanceMatcher& distance_matcher) {
|
|
return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher);
|
|
}
|
|
|
|
// Returns a matcher that matches an equal container.
|
|
// This matcher behaves like Eq(), but in the event of mismatch lists the
|
|
// values that are included in one container but not the other. (Duplicate
|
|
// values and order differences are not explained.)
|
|
template <typename Container>
|
|
inline PolymorphicMatcher<internal::ContainerEqMatcher<
|
|
typename std::remove_const<Container>::type>>
|
|
ContainerEq(const Container& rhs) {
|
|
// This following line is for working around a bug in MSVC 8.0,
|
|
// which causes Container to be a const type sometimes.
|
|
typedef typename std::remove_const<Container>::type RawContainer;
|
|
return MakePolymorphicMatcher(
|
|
internal::ContainerEqMatcher<RawContainer>(rhs));
|
|
}
|
|
|
|
// Returns a matcher that matches a container that, when sorted using
|
|
// the given comparator, matches container_matcher.
|
|
template <typename Comparator, typename ContainerMatcher>
|
|
inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher>
|
|
WhenSortedBy(const Comparator& comparator,
|
|
const ContainerMatcher& container_matcher) {
|
|
return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>(
|
|
comparator, container_matcher);
|
|
}
|
|
|
|
// Returns a matcher that matches a container that, when sorted using
|
|
// the < operator, matches container_matcher.
|
|
template <typename ContainerMatcher>
|
|
inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>
|
|
WhenSorted(const ContainerMatcher& container_matcher) {
|
|
return
|
|
internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>(
|
|
internal::LessComparator(), container_matcher);
|
|
}
|
|
|
|
// Matches an STL-style container or a native array that contains the
|
|
// same number of elements as in rhs, where its i-th element and rhs's
|
|
// i-th element (as a pair) satisfy the given pair matcher, for all i.
|
|
// TupleMatcher must be able to be safely cast to Matcher<std::tuple<const
|
|
// T1&, const T2&> >, where T1 and T2 are the types of elements in the
|
|
// LHS container and the RHS container respectively.
|
|
template <typename TupleMatcher, typename Container>
|
|
inline internal::PointwiseMatcher<TupleMatcher,
|
|
typename std::remove_const<Container>::type>
|
|
Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) {
|
|
// This following line is for working around a bug in MSVC 8.0,
|
|
// which causes Container to be a const type sometimes (e.g. when
|
|
// rhs is a const int[])..
|
|
typedef typename std::remove_const<Container>::type RawContainer;
|
|
return internal::PointwiseMatcher<TupleMatcher, RawContainer>(
|
|
tuple_matcher, rhs);
|
|
}
|
|
|
|
|
|
// Supports the Pointwise(m, {a, b, c}) syntax.
|
|
template <typename TupleMatcher, typename T>
|
|
inline internal::PointwiseMatcher<TupleMatcher, std::vector<T> > Pointwise(
|
|
const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) {
|
|
return Pointwise(tuple_matcher, std::vector<T>(rhs));
|
|
}
|
|
|
|
|
|
// UnorderedPointwise(pair_matcher, rhs) matches an STL-style
|
|
// container or a native array that contains the same number of
|
|
// elements as in rhs, where in some permutation of the container, its
|
|
// i-th element and rhs's i-th element (as a pair) satisfy the given
|
|
// pair matcher, for all i. Tuple2Matcher must be able to be safely
|
|
// cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are
|
|
// the types of elements in the LHS container and the RHS container
|
|
// respectively.
|
|
//
|
|
// This is like Pointwise(pair_matcher, rhs), except that the element
|
|
// order doesn't matter.
|
|
template <typename Tuple2Matcher, typename RhsContainer>
|
|
inline internal::UnorderedElementsAreArrayMatcher<
|
|
typename internal::BoundSecondMatcher<
|
|
Tuple2Matcher,
|
|
typename internal::StlContainerView<
|
|
typename std::remove_const<RhsContainer>::type>::type::value_type>>
|
|
UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
|
|
const RhsContainer& rhs_container) {
|
|
// This following line is for working around a bug in MSVC 8.0,
|
|
// which causes RhsContainer to be a const type sometimes (e.g. when
|
|
// rhs_container is a const int[]).
|
|
typedef typename std::remove_const<RhsContainer>::type RawRhsContainer;
|
|
|
|
// RhsView allows the same code to handle RhsContainer being a
|
|
// STL-style container and it being a native C-style array.
|
|
typedef typename internal::StlContainerView<RawRhsContainer> RhsView;
|
|
typedef typename RhsView::type RhsStlContainer;
|
|
typedef typename RhsStlContainer::value_type Second;
|
|
const RhsStlContainer& rhs_stl_container =
|
|
RhsView::ConstReference(rhs_container);
|
|
|
|
// Create a matcher for each element in rhs_container.
|
|
::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second> > matchers;
|
|
for (typename RhsStlContainer::const_iterator it = rhs_stl_container.begin();
|
|
it != rhs_stl_container.end(); ++it) {
|
|
matchers.push_back(
|
|
internal::MatcherBindSecond(tuple2_matcher, *it));
|
|
}
|
|
|
|
// Delegate the work to UnorderedElementsAreArray().
|
|
return UnorderedElementsAreArray(matchers);
|
|
}
|
|
|
|
|
|
// Supports the UnorderedPointwise(m, {a, b, c}) syntax.
|
|
template <typename Tuple2Matcher, typename T>
|
|
inline internal::UnorderedElementsAreArrayMatcher<
|
|
typename internal::BoundSecondMatcher<Tuple2Matcher, T> >
|
|
UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
|
|
std::initializer_list<T> rhs) {
|
|
return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs));
|
|
}
|
|
|
|
|
|
// Matches an STL-style container or a native array that contains at
|
|
// least one element matching the given value or matcher.
|
|
//
|
|
// Examples:
|
|
// ::std::set<int> page_ids;
|
|
// page_ids.insert(3);
|
|
// page_ids.insert(1);
|
|
// EXPECT_THAT(page_ids, Contains(1));
|
|
// EXPECT_THAT(page_ids, Contains(Gt(2)));
|
|
// EXPECT_THAT(page_ids, Not(Contains(4)));
|
|
//
|
|
// ::std::map<int, size_t> page_lengths;
|
|
// page_lengths[1] = 100;
|
|
// EXPECT_THAT(page_lengths,
|
|
// Contains(::std::pair<const int, size_t>(1, 100)));
|
|
//
|
|
// const char* user_ids[] = { "joe", "mike", "tom" };
|
|
// EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
|
|
template <typename M>
|
|
inline internal::ContainsMatcher<M> Contains(M matcher) {
|
|
return internal::ContainsMatcher<M>(matcher);
|
|
}
|
|
|
|
// IsSupersetOf(iterator_first, iterator_last)
|
|
// IsSupersetOf(pointer, count)
|
|
// IsSupersetOf(array)
|
|
// IsSupersetOf(container)
|
|
// IsSupersetOf({e1, e2, ..., en})
|
|
//
|
|
// IsSupersetOf() verifies that a surjective partial mapping onto a collection
|
|
// of matchers exists. In other words, a container matches
|
|
// IsSupersetOf({e1, ..., en}) if and only if there is a permutation
|
|
// {y1, ..., yn} of some of the container's elements where y1 matches e1,
|
|
// ..., and yn matches en. Obviously, the size of the container must be >= n
|
|
// in order to have a match. Examples:
|
|
//
|
|
// - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and
|
|
// 1 matches Ne(0).
|
|
// - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches
|
|
// both Eq(1) and Lt(2). The reason is that different matchers must be used
|
|
// for elements in different slots of the container.
|
|
// - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches
|
|
// Eq(1) and (the second) 1 matches Lt(2).
|
|
// - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first)
|
|
// Gt(1) and 3 matches (the second) Gt(1).
|
|
//
|
|
// The matchers can be specified as an array, a pointer and count, a container,
|
|
// an initializer list, or an STL iterator range. In each of these cases, the
|
|
// underlying matchers can be either values or matchers.
|
|
|
|
template <typename Iter>
|
|
inline internal::UnorderedElementsAreArrayMatcher<
|
|
typename ::std::iterator_traits<Iter>::value_type>
|
|
IsSupersetOf(Iter first, Iter last) {
|
|
typedef typename ::std::iterator_traits<Iter>::value_type T;
|
|
return internal::UnorderedElementsAreArrayMatcher<T>(
|
|
internal::UnorderedMatcherRequire::Superset, first, last);
|
|
}
|
|
|
|
template <typename T>
|
|
inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
|
|
const T* pointer, size_t count) {
|
|
return IsSupersetOf(pointer, pointer + count);
|
|
}
|
|
|
|
template <typename T, size_t N>
|
|
inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
|
|
const T (&array)[N]) {
|
|
return IsSupersetOf(array, N);
|
|
}
|
|
|
|
template <typename Container>
|
|
inline internal::UnorderedElementsAreArrayMatcher<
|
|
typename Container::value_type>
|
|
IsSupersetOf(const Container& container) {
|
|
return IsSupersetOf(container.begin(), container.end());
|
|
}
|
|
|
|
template <typename T>
|
|
inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
|
|
::std::initializer_list<T> xs) {
|
|
return IsSupersetOf(xs.begin(), xs.end());
|
|
}
|
|
|
|
// IsSubsetOf(iterator_first, iterator_last)
|
|
// IsSubsetOf(pointer, count)
|
|
// IsSubsetOf(array)
|
|
// IsSubsetOf(container)
|
|
// IsSubsetOf({e1, e2, ..., en})
|
|
//
|
|
// IsSubsetOf() verifies that an injective mapping onto a collection of matchers
|
|
// exists. In other words, a container matches IsSubsetOf({e1, ..., en}) if and
|
|
// only if there is a subset of matchers {m1, ..., mk} which would match the
|
|
// container using UnorderedElementsAre. Obviously, the size of the container
|
|
// must be <= n in order to have a match. Examples:
|
|
//
|
|
// - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0).
|
|
// - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1
|
|
// matches Lt(0).
|
|
// - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both
|
|
// match Gt(0). The reason is that different matchers must be used for
|
|
// elements in different slots of the container.
|
|
//
|
|
// The matchers can be specified as an array, a pointer and count, a container,
|
|
// an initializer list, or an STL iterator range. In each of these cases, the
|
|
// underlying matchers can be either values or matchers.
|
|
|
|
template <typename Iter>
|
|
inline internal::UnorderedElementsAreArrayMatcher<
|
|
typename ::std::iterator_traits<Iter>::value_type>
|
|
IsSubsetOf(Iter first, Iter last) {
|
|
typedef typename ::std::iterator_traits<Iter>::value_type T;
|
|
return internal::UnorderedElementsAreArrayMatcher<T>(
|
|
internal::UnorderedMatcherRequire::Subset, first, last);
|
|
}
|
|
|
|
template <typename T>
|
|
inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
|
|
const T* pointer, size_t count) {
|
|
return IsSubsetOf(pointer, pointer + count);
|
|
}
|
|
|
|
template <typename T, size_t N>
|
|
inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
|
|
const T (&array)[N]) {
|
|
return IsSubsetOf(array, N);
|
|
}
|
|
|
|
template <typename Container>
|
|
inline internal::UnorderedElementsAreArrayMatcher<
|
|
typename Container::value_type>
|
|
IsSubsetOf(const Container& container) {
|
|
return IsSubsetOf(container.begin(), container.end());
|
|
}
|
|
|
|
template <typename T>
|
|
inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
|
|
::std::initializer_list<T> xs) {
|
|
return IsSubsetOf(xs.begin(), xs.end());
|
|
}
|
|
|
|
// Matches an STL-style container or a native array that contains only
|
|
// elements matching the given value or matcher.
|
|
//
|
|
// Each(m) is semantically equivalent to Not(Contains(Not(m))). Only
|
|
// the messages are different.
|
|
//
|
|
// Examples:
|
|
// ::std::set<int> page_ids;
|
|
// // Each(m) matches an empty container, regardless of what m is.
|
|
// EXPECT_THAT(page_ids, Each(Eq(1)));
|
|
// EXPECT_THAT(page_ids, Each(Eq(77)));
|
|
//
|
|
// page_ids.insert(3);
|
|
// EXPECT_THAT(page_ids, Each(Gt(0)));
|
|
// EXPECT_THAT(page_ids, Not(Each(Gt(4))));
|
|
// page_ids.insert(1);
|
|
// EXPECT_THAT(page_ids, Not(Each(Lt(2))));
|
|
//
|
|
// ::std::map<int, size_t> page_lengths;
|
|
// page_lengths[1] = 100;
|
|
// page_lengths[2] = 200;
|
|
// page_lengths[3] = 300;
|
|
// EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100))));
|
|
// EXPECT_THAT(page_lengths, Each(Key(Le(3))));
|
|
//
|
|
// const char* user_ids[] = { "joe", "mike", "tom" };
|
|
// EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom")))));
|
|
template <typename M>
|
|
inline internal::EachMatcher<M> Each(M matcher) {
|
|
return internal::EachMatcher<M>(matcher);
|
|
}
|
|
|
|
// Key(inner_matcher) matches an std::pair whose 'first' field matches
|
|
// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
|
|
// std::map that contains at least one element whose key is >= 5.
|
|
template <typename M>
|
|
inline internal::KeyMatcher<M> Key(M inner_matcher) {
|
|
return internal::KeyMatcher<M>(inner_matcher);
|
|
}
|
|
|
|
// Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
|
|
// matches first_matcher and whose 'second' field matches second_matcher. For
|
|
// example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
|
|
// to match a std::map<int, string> that contains exactly one element whose key
|
|
// is >= 5 and whose value equals "foo".
|
|
template <typename FirstMatcher, typename SecondMatcher>
|
|
inline internal::PairMatcher<FirstMatcher, SecondMatcher>
|
|
Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) {
|
|
return internal::PairMatcher<FirstMatcher, SecondMatcher>(
|
|
first_matcher, second_matcher);
|
|
}
|
|
|
|
// Returns a predicate that is satisfied by anything that matches the
|
|
// given matcher.
|
|
template <typename M>
|
|
inline internal::MatcherAsPredicate<M> Matches(M matcher) {
|
|
return internal::MatcherAsPredicate<M>(matcher);
|
|
}
|
|
|
|
// Returns true if and only if the value matches the matcher.
|
|
template <typename T, typename M>
|
|
inline bool Value(const T& value, M matcher) {
|
|
return testing::Matches(matcher)(value);
|
|
}
|
|
|
|
// Matches the value against the given matcher and explains the match
|
|
// result to listener.
|
|
template <typename T, typename M>
|
|
inline bool ExplainMatchResult(
|
|
M matcher, const T& value, MatchResultListener* listener) {
|
|
return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener);
|
|
}
|
|
|
|
// Returns a string representation of the given matcher. Useful for description
|
|
// strings of matchers defined using MATCHER_P* macros that accept matchers as
|
|
// their arguments. For example:
|
|
//
|
|
// MATCHER_P(XAndYThat, matcher,
|
|
// "X that " + DescribeMatcher<int>(matcher, negation) +
|
|
// " and Y that " + DescribeMatcher<double>(matcher, negation)) {
|
|
// return ExplainMatchResult(matcher, arg.x(), result_listener) &&
|
|
// ExplainMatchResult(matcher, arg.y(), result_listener);
|
|
// }
|
|
template <typename T, typename M>
|
|
std::string DescribeMatcher(const M& matcher, bool negation = false) {
|
|
::std::stringstream ss;
|
|
Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher);
|
|
if (negation) {
|
|
monomorphic_matcher.DescribeNegationTo(&ss);
|
|
} else {
|
|
monomorphic_matcher.DescribeTo(&ss);
|
|
}
|
|
return ss.str();
|
|
}
|
|
|
|
template <typename... Args>
|
|
internal::ElementsAreMatcher<
|
|
std::tuple<typename std::decay<const Args&>::type...>>
|
|
ElementsAre(const Args&... matchers) {
|
|
return internal::ElementsAreMatcher<
|
|
std::tuple<typename std::decay<const Args&>::type...>>(
|
|
std::make_tuple(matchers...));
|
|
}
|
|
|
|
template <typename... Args>
|
|
internal::UnorderedElementsAreMatcher<
|
|
std::tuple<typename std::decay<const Args&>::type...>>
|
|
UnorderedElementsAre(const Args&... matchers) {
|
|
return internal::UnorderedElementsAreMatcher<
|
|
std::tuple<typename std::decay<const Args&>::type...>>(
|
|
std::make_tuple(matchers...));
|
|
}
|
|
|
|
// Define variadic matcher versions.
|
|
template <typename... Args>
|
|
internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf(
|
|
const Args&... matchers) {
|
|
return internal::AllOfMatcher<typename std::decay<const Args&>::type...>(
|
|
matchers...);
|
|
}
|
|
|
|
template <typename... Args>
|
|
internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf(
|
|
const Args&... matchers) {
|
|
return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>(
|
|
matchers...);
|
|
}
|
|
|
|
// AnyOfArray(array)
|
|
// AnyOfArray(pointer, count)
|
|
// AnyOfArray(container)
|
|
// AnyOfArray({ e1, e2, ..., en })
|
|
// AnyOfArray(iterator_first, iterator_last)
|
|
//
|
|
// AnyOfArray() verifies whether a given value matches any member of a
|
|
// collection of matchers.
|
|
//
|
|
// AllOfArray(array)
|
|
// AllOfArray(pointer, count)
|
|
// AllOfArray(container)
|
|
// AllOfArray({ e1, e2, ..., en })
|
|
// AllOfArray(iterator_first, iterator_last)
|
|
//
|
|
// AllOfArray() verifies whether a given value matches all members of a
|
|
// collection of matchers.
|
|
//
|
|
// The matchers can be specified as an array, a pointer and count, a container,
|
|
// an initializer list, or an STL iterator range. In each of these cases, the
|
|
// underlying matchers can be either values or matchers.
|
|
|
|
template <typename Iter>
|
|
inline internal::AnyOfArrayMatcher<
|
|
typename ::std::iterator_traits<Iter>::value_type>
|
|
AnyOfArray(Iter first, Iter last) {
|
|
return internal::AnyOfArrayMatcher<
|
|
typename ::std::iterator_traits<Iter>::value_type>(first, last);
|
|
}
|
|
|
|
template <typename Iter>
|
|
inline internal::AllOfArrayMatcher<
|
|
typename ::std::iterator_traits<Iter>::value_type>
|
|
AllOfArray(Iter first, Iter last) {
|
|
return internal::AllOfArrayMatcher<
|
|
typename ::std::iterator_traits<Iter>::value_type>(first, last);
|
|
}
|
|
|
|
template <typename T>
|
|
inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) {
|
|
return AnyOfArray(ptr, ptr + count);
|
|
}
|
|
|
|
template <typename T>
|
|
inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) {
|
|
return AllOfArray(ptr, ptr + count);
|
|
}
|
|
|
|
template <typename T, size_t N>
|
|
inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) {
|
|
return AnyOfArray(array, N);
|
|
}
|
|
|
|
template <typename T, size_t N>
|
|
inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) {
|
|
return AllOfArray(array, N);
|
|
}
|
|
|
|
template <typename Container>
|
|
inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray(
|
|
const Container& container) {
|
|
return AnyOfArray(container.begin(), container.end());
|
|
}
|
|
|
|
template <typename Container>
|
|
inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray(
|
|
const Container& container) {
|
|
return AllOfArray(container.begin(), container.end());
|
|
}
|
|
|
|
template <typename T>
|
|
inline internal::AnyOfArrayMatcher<T> AnyOfArray(
|
|
::std::initializer_list<T> xs) {
|
|
return AnyOfArray(xs.begin(), xs.end());
|
|
}
|
|
|
|
template <typename T>
|
|
inline internal::AllOfArrayMatcher<T> AllOfArray(
|
|
::std::initializer_list<T> xs) {
|
|
return AllOfArray(xs.begin(), xs.end());
|
|
}
|
|
|
|
// Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected
|
|
// fields of it matches a_matcher. C++ doesn't support default
|
|
// arguments for function templates, so we have to overload it.
|
|
template <size_t... k, typename InnerMatcher>
|
|
internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args(
|
|
InnerMatcher&& matcher) {
|
|
return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>(
|
|
std::forward<InnerMatcher>(matcher));
|
|
}
|
|
|
|
// AllArgs(m) is a synonym of m. This is useful in
|
|
//
|
|
// EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
|
|
//
|
|
// which is easier to read than
|
|
//
|
|
// EXPECT_CALL(foo, Bar(_, _)).With(Eq());
|
|
template <typename InnerMatcher>
|
|
inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; }
|
|
|
|
// Returns a matcher that matches the value of an optional<> type variable.
|
|
// The matcher implementation only uses '!arg' and requires that the optional<>
|
|
// type has a 'value_type' member type and that '*arg' is of type 'value_type'
|
|
// and is printable using 'PrintToString'. It is compatible with
|
|
// std::optional/std::experimental::optional.
|
|
// Note that to compare an optional type variable against nullopt you should
|
|
// use Eq(nullopt) and not Optional(Eq(nullopt)). The latter implies that the
|
|
// optional value contains an optional itself.
|
|
template <typename ValueMatcher>
|
|
inline internal::OptionalMatcher<ValueMatcher> Optional(
|
|
const ValueMatcher& value_matcher) {
|
|
return internal::OptionalMatcher<ValueMatcher>(value_matcher);
|
|
}
|
|
|
|
// Returns a matcher that matches the value of a absl::any type variable.
|
|
template <typename T>
|
|
PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T> > AnyWith(
|
|
const Matcher<const T&>& matcher) {
|
|
return MakePolymorphicMatcher(
|
|
internal::any_cast_matcher::AnyCastMatcher<T>(matcher));
|
|
}
|
|
|
|
// Returns a matcher that matches the value of a variant<> type variable.
|
|
// The matcher implementation uses ADL to find the holds_alternative and get
|
|
// functions.
|
|
// It is compatible with std::variant.
|
|
template <typename T>
|
|
PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T> > VariantWith(
|
|
const Matcher<const T&>& matcher) {
|
|
return MakePolymorphicMatcher(
|
|
internal::variant_matcher::VariantMatcher<T>(matcher));
|
|
}
|
|
|
|
// These macros allow using matchers to check values in Google Test
|
|
// tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
|
|
// succeed if and only if the value matches the matcher. If the assertion
|
|
// fails, the value and the description of the matcher will be printed.
|
|
#define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\
|
|
::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
|
|
#define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\
|
|
::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
|
|
|
|
} // namespace testing
|
|
|
|
GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 5046
|
|
|
|
// Include any custom callback matchers added by the local installation.
|
|
// We must include this header at the end to make sure it can use the
|
|
// declarations from this file.
|
|
#include "gmock/internal/custom/gmock-matchers.h"
|
|
|
|
#endif // GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
|