googletest/test/gmock-internal-utils_test.cc
2009-08-14 04:50:02 +00:00

976 lines
32 KiB
C++

// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
// Google Mock - a framework for writing C++ mock classes.
//
// This file tests the internal utilities.
#include <gmock/internal/gmock-internal-utils.h>
#include <stdlib.h>
#include <map>
#include <string>
#include <sstream>
#include <vector>
#include <gmock/gmock.h>
#include <gmock/internal/gmock-port.h>
#include <gtest/gtest.h>
#include <gtest/gtest-spi.h>
#if GTEST_OS_CYGWIN
#include <sys/types.h> // For ssize_t. NOLINT
#endif
class ProtocolMessage;
namespace proto2 {
class Message;
} // namespace proto2
namespace testing {
namespace internal {
namespace {
using ::std::tr1::make_tuple;
using ::std::tr1::tuple;
TEST(ConvertIdentifierNameToWordsTest, WorksWhenNameContainsNoWord) {
EXPECT_EQ("", ConvertIdentifierNameToWords(""));
EXPECT_EQ("", ConvertIdentifierNameToWords("_"));
EXPECT_EQ("", ConvertIdentifierNameToWords("__"));
}
TEST(ConvertIdentifierNameToWordsTest, WorksWhenNameContainsDigits) {
EXPECT_EQ("1", ConvertIdentifierNameToWords("_1"));
EXPECT_EQ("2", ConvertIdentifierNameToWords("2_"));
EXPECT_EQ("34", ConvertIdentifierNameToWords("_34_"));
EXPECT_EQ("34 56", ConvertIdentifierNameToWords("_34_56"));
}
TEST(ConvertIdentifierNameToWordsTest, WorksWhenNameContainsCamelCaseWords) {
EXPECT_EQ("a big word", ConvertIdentifierNameToWords("ABigWord"));
EXPECT_EQ("foo bar", ConvertIdentifierNameToWords("FooBar"));
EXPECT_EQ("foo", ConvertIdentifierNameToWords("Foo_"));
EXPECT_EQ("foo bar", ConvertIdentifierNameToWords("_Foo_Bar_"));
EXPECT_EQ("foo and bar", ConvertIdentifierNameToWords("_Foo__And_Bar"));
}
TEST(ConvertIdentifierNameToWordsTest, WorksWhenNameContains_SeparatedWords) {
EXPECT_EQ("foo bar", ConvertIdentifierNameToWords("foo_bar"));
EXPECT_EQ("foo", ConvertIdentifierNameToWords("_foo_"));
EXPECT_EQ("foo bar", ConvertIdentifierNameToWords("_foo_bar_"));
EXPECT_EQ("foo and bar", ConvertIdentifierNameToWords("_foo__and_bar"));
}
TEST(ConvertIdentifierNameToWordsTest, WorksWhenNameIsMixture) {
EXPECT_EQ("foo bar 123", ConvertIdentifierNameToWords("Foo_bar123"));
EXPECT_EQ("chapter 11 section 1",
ConvertIdentifierNameToWords("_Chapter11Section_1_"));
}
// Tests that CompileAssertTypesEqual compiles when the type arguments are
// equal.
TEST(CompileAssertTypesEqual, CompilesWhenTypesAreEqual) {
CompileAssertTypesEqual<void, void>();
CompileAssertTypesEqual<int*, int*>();
}
// Tests that RemoveReference does not affect non-reference types.
TEST(RemoveReferenceTest, DoesNotAffectNonReferenceType) {
CompileAssertTypesEqual<int, RemoveReference<int>::type>();
CompileAssertTypesEqual<const char, RemoveReference<const char>::type>();
}
// Tests that RemoveReference removes reference from reference types.
TEST(RemoveReferenceTest, RemovesReference) {
CompileAssertTypesEqual<int, RemoveReference<int&>::type>();
CompileAssertTypesEqual<const char, RemoveReference<const char&>::type>();
}
// Tests GMOCK_REMOVE_REFERENCE_.
template <typename T1, typename T2>
void TestGMockRemoveReference() {
CompileAssertTypesEqual<T1, GMOCK_REMOVE_REFERENCE_(T2)>();
}
TEST(RemoveReferenceTest, MacroVersion) {
TestGMockRemoveReference<int, int>();
TestGMockRemoveReference<const char, const char&>();
}
// Tests that RemoveConst does not affect non-const types.
TEST(RemoveConstTest, DoesNotAffectNonConstType) {
CompileAssertTypesEqual<int, RemoveConst<int>::type>();
CompileAssertTypesEqual<char&, RemoveConst<char&>::type>();
}
// Tests that RemoveConst removes const from const types.
TEST(RemoveConstTest, RemovesConst) {
CompileAssertTypesEqual<int, RemoveConst<const int>::type>();
CompileAssertTypesEqual<char[2], RemoveConst<const char[2]>::type>();
CompileAssertTypesEqual<char[2][3], RemoveConst<const char[2][3]>::type>();
}
// Tests GMOCK_REMOVE_CONST_.
template <typename T1, typename T2>
void TestGMockRemoveConst() {
CompileAssertTypesEqual<T1, GMOCK_REMOVE_CONST_(T2)>();
}
TEST(RemoveConstTest, MacroVersion) {
TestGMockRemoveConst<int, int>();
TestGMockRemoveConst<double&, double&>();
TestGMockRemoveConst<char, const char>();
}
// Tests that AddReference does not affect reference types.
TEST(AddReferenceTest, DoesNotAffectReferenceType) {
CompileAssertTypesEqual<int&, AddReference<int&>::type>();
CompileAssertTypesEqual<const char&, AddReference<const char&>::type>();
}
// Tests that AddReference adds reference to non-reference types.
TEST(AddReferenceTest, AddsReference) {
CompileAssertTypesEqual<int&, AddReference<int>::type>();
CompileAssertTypesEqual<const char&, AddReference<const char>::type>();
}
// Tests GMOCK_ADD_REFERENCE_.
template <typename T1, typename T2>
void TestGMockAddReference() {
CompileAssertTypesEqual<T1, GMOCK_ADD_REFERENCE_(T2)>();
}
TEST(AddReferenceTest, MacroVersion) {
TestGMockAddReference<int&, int>();
TestGMockAddReference<const char&, const char&>();
}
// Tests GMOCK_REFERENCE_TO_CONST_.
template <typename T1, typename T2>
void TestGMockReferenceToConst() {
CompileAssertTypesEqual<T1, GMOCK_REFERENCE_TO_CONST_(T2)>();
}
TEST(GMockReferenceToConstTest, Works) {
TestGMockReferenceToConst<const char&, char>();
TestGMockReferenceToConst<const int&, const int>();
TestGMockReferenceToConst<const double&, double>();
TestGMockReferenceToConst<const string&, const string&>();
}
TEST(PointeeOfTest, WorksForSmartPointers) {
CompileAssertTypesEqual<const char,
PointeeOf<internal::linked_ptr<const char> >::type>();
}
TEST(PointeeOfTest, WorksForRawPointers) {
CompileAssertTypesEqual<int, PointeeOf<int*>::type>();
CompileAssertTypesEqual<const char, PointeeOf<const char*>::type>();
CompileAssertTypesEqual<void, PointeeOf<void*>::type>();
}
TEST(GetRawPointerTest, WorksForSmartPointers) {
const char* const raw_p4 = new const char('a'); // NOLINT
const internal::linked_ptr<const char> p4(raw_p4);
EXPECT_EQ(raw_p4, GetRawPointer(p4));
}
TEST(GetRawPointerTest, WorksForRawPointers) {
int* p = NULL;
EXPECT_EQ(NULL, GetRawPointer(p));
int n = 1;
EXPECT_EQ(&n, GetRawPointer(&n));
}
class Base {};
class Derived : public Base {};
// Tests that ImplicitlyConvertible<T1, T2>::value is a compile-time constant.
TEST(ImplicitlyConvertibleTest, ValueIsCompileTimeConstant) {
GMOCK_COMPILE_ASSERT_((ImplicitlyConvertible<int, int>::value), const_true);
GMOCK_COMPILE_ASSERT_((!ImplicitlyConvertible<void*, int*>::value),
const_false);
}
// Tests that ImplicitlyConvertible<T1, T2>::value is true when T1 can
// be implicitly converted to T2.
TEST(ImplicitlyConvertibleTest, ValueIsTrueWhenConvertible) {
EXPECT_TRUE((ImplicitlyConvertible<int, double>::value));
EXPECT_TRUE((ImplicitlyConvertible<double, int>::value));
EXPECT_TRUE((ImplicitlyConvertible<int*, void*>::value));
EXPECT_TRUE((ImplicitlyConvertible<int*, const int*>::value));
EXPECT_TRUE((ImplicitlyConvertible<Derived&, const Base&>::value));
EXPECT_TRUE((ImplicitlyConvertible<const Base, Base>::value));
}
// Tests that ImplicitlyConvertible<T1, T2>::value is false when T1
// cannot be implicitly converted to T2.
TEST(ImplicitlyConvertibleTest, ValueIsFalseWhenNotConvertible) {
EXPECT_FALSE((ImplicitlyConvertible<double, int*>::value));
EXPECT_FALSE((ImplicitlyConvertible<void*, int*>::value));
EXPECT_FALSE((ImplicitlyConvertible<const int*, int*>::value));
EXPECT_FALSE((ImplicitlyConvertible<Base&, Derived&>::value));
}
// Tests KindOf<T>.
TEST(KindOfTest, Bool) {
EXPECT_EQ(kBool, GMOCK_KIND_OF_(bool)); // NOLINT
}
TEST(KindOfTest, Integer) {
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(char)); // NOLINT
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(signed char)); // NOLINT
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(unsigned char)); // NOLINT
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(short)); // NOLINT
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(unsigned short)); // NOLINT
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(int)); // NOLINT
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(unsigned int)); // NOLINT
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(long)); // NOLINT
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(unsigned long)); // NOLINT
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(wchar_t)); // NOLINT
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(Int64)); // NOLINT
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(UInt64)); // NOLINT
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(size_t)); // NOLINT
#if GTEST_OS_LINUX || GTEST_OS_MAC || GTEST_OS_CYGWIN
// ssize_t is not defined on Windows and possibly some other OSes.
EXPECT_EQ(kInteger, GMOCK_KIND_OF_(ssize_t)); // NOLINT
#endif
}
TEST(KindOfTest, FloatingPoint) {
EXPECT_EQ(kFloatingPoint, GMOCK_KIND_OF_(float)); // NOLINT
EXPECT_EQ(kFloatingPoint, GMOCK_KIND_OF_(double)); // NOLINT
EXPECT_EQ(kFloatingPoint, GMOCK_KIND_OF_(long double)); // NOLINT
}
TEST(KindOfTest, Other) {
EXPECT_EQ(kOther, GMOCK_KIND_OF_(void*)); // NOLINT
EXPECT_EQ(kOther, GMOCK_KIND_OF_(char**)); // NOLINT
EXPECT_EQ(kOther, GMOCK_KIND_OF_(Base)); // NOLINT
}
// Tests LosslessArithmeticConvertible<T, U>.
TEST(LosslessArithmeticConvertibleTest, BoolToBool) {
EXPECT_TRUE((LosslessArithmeticConvertible<bool, bool>::value));
}
TEST(LosslessArithmeticConvertibleTest, BoolToInteger) {
EXPECT_TRUE((LosslessArithmeticConvertible<bool, char>::value));
EXPECT_TRUE((LosslessArithmeticConvertible<bool, int>::value));
EXPECT_TRUE(
(LosslessArithmeticConvertible<bool, unsigned long>::value)); // NOLINT
}
TEST(LosslessArithmeticConvertibleTest, BoolToFloatingPoint) {
EXPECT_TRUE((LosslessArithmeticConvertible<bool, float>::value));
EXPECT_TRUE((LosslessArithmeticConvertible<bool, double>::value));
}
TEST(LosslessArithmeticConvertibleTest, IntegerToBool) {
EXPECT_FALSE((LosslessArithmeticConvertible<unsigned char, bool>::value));
EXPECT_FALSE((LosslessArithmeticConvertible<int, bool>::value));
}
TEST(LosslessArithmeticConvertibleTest, IntegerToInteger) {
// Unsigned => larger signed is fine.
EXPECT_TRUE((LosslessArithmeticConvertible<unsigned char, int>::value));
// Unsigned => larger unsigned is fine.
EXPECT_TRUE(
(LosslessArithmeticConvertible<unsigned short, UInt64>::value)); // NOLINT
// Signed => unsigned is not fine.
EXPECT_FALSE((LosslessArithmeticConvertible<short, UInt64>::value)); // NOLINT
EXPECT_FALSE((LosslessArithmeticConvertible<
signed char, unsigned int>::value)); // NOLINT
// Same size and same signedness: fine too.
EXPECT_TRUE((LosslessArithmeticConvertible<
unsigned char, unsigned char>::value));
EXPECT_TRUE((LosslessArithmeticConvertible<int, int>::value));
EXPECT_TRUE((LosslessArithmeticConvertible<wchar_t, wchar_t>::value));
EXPECT_TRUE((LosslessArithmeticConvertible<
unsigned long, unsigned long>::value)); // NOLINT
// Same size, different signedness: not fine.
EXPECT_FALSE((LosslessArithmeticConvertible<
unsigned char, signed char>::value));
EXPECT_FALSE((LosslessArithmeticConvertible<int, unsigned int>::value));
EXPECT_FALSE((LosslessArithmeticConvertible<UInt64, Int64>::value));
// Larger size => smaller size is not fine.
EXPECT_FALSE((LosslessArithmeticConvertible<long, char>::value)); // NOLINT
EXPECT_FALSE((LosslessArithmeticConvertible<int, signed char>::value));
EXPECT_FALSE((LosslessArithmeticConvertible<Int64, unsigned int>::value));
}
TEST(LosslessArithmeticConvertibleTest, IntegerToFloatingPoint) {
// Integers cannot be losslessly converted to floating-points, as
// the format of the latter is implementation-defined.
EXPECT_FALSE((LosslessArithmeticConvertible<char, float>::value));
EXPECT_FALSE((LosslessArithmeticConvertible<int, double>::value));
EXPECT_FALSE((LosslessArithmeticConvertible<
short, long double>::value)); // NOLINT
}
TEST(LosslessArithmeticConvertibleTest, FloatingPointToBool) {
EXPECT_FALSE((LosslessArithmeticConvertible<float, bool>::value));
EXPECT_FALSE((LosslessArithmeticConvertible<double, bool>::value));
}
TEST(LosslessArithmeticConvertibleTest, FloatingPointToInteger) {
EXPECT_FALSE((LosslessArithmeticConvertible<float, long>::value)); // NOLINT
EXPECT_FALSE((LosslessArithmeticConvertible<double, Int64>::value));
EXPECT_FALSE((LosslessArithmeticConvertible<long double, int>::value));
}
TEST(LosslessArithmeticConvertibleTest, FloatingPointToFloatingPoint) {
// Smaller size => larger size is fine.
EXPECT_TRUE((LosslessArithmeticConvertible<float, double>::value));
EXPECT_TRUE((LosslessArithmeticConvertible<float, long double>::value));
EXPECT_TRUE((LosslessArithmeticConvertible<double, long double>::value));
// Same size: fine.
EXPECT_TRUE((LosslessArithmeticConvertible<float, float>::value));
EXPECT_TRUE((LosslessArithmeticConvertible<double, double>::value));
// Larger size => smaller size is not fine.
EXPECT_FALSE((LosslessArithmeticConvertible<double, float>::value));
if (sizeof(double) == sizeof(long double)) { // NOLINT
// In some implementations (e.g. MSVC), double and long double
// have the same size.
EXPECT_TRUE((LosslessArithmeticConvertible<long double, double>::value));
} else {
EXPECT_FALSE((LosslessArithmeticConvertible<long double, double>::value));
}
}
// Tests that IsAProtocolMessage<T>::value is a compile-time constant.
TEST(IsAProtocolMessageTest, ValueIsCompileTimeConstant) {
GMOCK_COMPILE_ASSERT_(IsAProtocolMessage<ProtocolMessage>::value, const_true);
GMOCK_COMPILE_ASSERT_(!IsAProtocolMessage<int>::value, const_false);
}
// Tests that IsAProtocolMessage<T>::value is true when T is
// ProtocolMessage or a sub-class of it.
TEST(IsAProtocolMessageTest, ValueIsTrueWhenTypeIsAProtocolMessage) {
EXPECT_TRUE(IsAProtocolMessage< ::proto2::Message>::value);
EXPECT_TRUE(IsAProtocolMessage<ProtocolMessage>::value);
#if GMOCK_HAS_PROTOBUF_
EXPECT_TRUE(IsAProtocolMessage<const TestMessage>::value);
#endif // GMOCK_HAS_PROTOBUF_
}
// Tests that IsAProtocolMessage<T>::value is false when T is neither
// ProtocolMessage nor a sub-class of it.
TEST(IsAProtocolMessageTest, ValueIsFalseWhenTypeIsNotAProtocolMessage) {
EXPECT_FALSE(IsAProtocolMessage<int>::value);
EXPECT_FALSE(IsAProtocolMessage<const Base>::value);
}
// Tests IsContainerTest.
class NonContainer {};
TEST(IsContainerTestTest, WorksForNonContainer) {
EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0)));
EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0)));
EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0)));
}
TEST(IsContainerTestTest, WorksForContainer) {
EXPECT_EQ(sizeof(IsContainer),
sizeof(IsContainerTest<std::vector<bool> >(0)));
EXPECT_EQ(sizeof(IsContainer),
sizeof(IsContainerTest<std::map<int, double> >(0)));
}
// Tests the TupleMatches() template function.
TEST(TupleMatchesTest, WorksForSize0) {
tuple<> matchers;
tuple<> values;
EXPECT_TRUE(TupleMatches(matchers, values));
}
TEST(TupleMatchesTest, WorksForSize1) {
tuple<Matcher<int> > matchers(Eq(1));
tuple<int> values1(1),
values2(2);
EXPECT_TRUE(TupleMatches(matchers, values1));
EXPECT_FALSE(TupleMatches(matchers, values2));
}
TEST(TupleMatchesTest, WorksForSize2) {
tuple<Matcher<int>, Matcher<char> > matchers(Eq(1), Eq('a'));
tuple<int, char> values1(1, 'a'),
values2(1, 'b'),
values3(2, 'a'),
values4(2, 'b');
EXPECT_TRUE(TupleMatches(matchers, values1));
EXPECT_FALSE(TupleMatches(matchers, values2));
EXPECT_FALSE(TupleMatches(matchers, values3));
EXPECT_FALSE(TupleMatches(matchers, values4));
}
TEST(TupleMatchesTest, WorksForSize5) {
tuple<Matcher<int>, Matcher<char>, Matcher<bool>, Matcher<long>, // NOLINT
Matcher<string> >
matchers(Eq(1), Eq('a'), Eq(true), Eq(2L), Eq("hi"));
tuple<int, char, bool, long, string> // NOLINT
values1(1, 'a', true, 2L, "hi"),
values2(1, 'a', true, 2L, "hello"),
values3(2, 'a', true, 2L, "hi");
EXPECT_TRUE(TupleMatches(matchers, values1));
EXPECT_FALSE(TupleMatches(matchers, values2));
EXPECT_FALSE(TupleMatches(matchers, values3));
}
// Tests that Assert(true, ...) succeeds.
TEST(AssertTest, SucceedsOnTrue) {
Assert(true, __FILE__, __LINE__, "This should succeed.");
Assert(true, __FILE__, __LINE__); // This should succeed too.
}
#if GTEST_HAS_DEATH_TEST
// Tests that Assert(false, ...) generates a fatal failure.
TEST(AssertTest, FailsFatallyOnFalse) {
EXPECT_DEATH({ // NOLINT
Assert(false, __FILE__, __LINE__, "This should fail.");
}, "");
EXPECT_DEATH({ // NOLINT
Assert(false, __FILE__, __LINE__);
}, "");
}
#endif // GTEST_HAS_DEATH_TEST
// Tests that Expect(true, ...) succeeds.
TEST(ExpectTest, SucceedsOnTrue) {
Expect(true, __FILE__, __LINE__, "This should succeed.");
Expect(true, __FILE__, __LINE__); // This should succeed too.
}
// Tests that Expect(false, ...) generates a non-fatal failure.
TEST(ExpectTest, FailsNonfatallyOnFalse) {
EXPECT_NONFATAL_FAILURE({ // NOLINT
Expect(false, __FILE__, __LINE__, "This should fail.");
}, "This should fail");
EXPECT_NONFATAL_FAILURE({ // NOLINT
Expect(false, __FILE__, __LINE__);
}, "Expectation failed");
}
// Tests LogIsVisible().
class LogIsVisibleTest : public ::testing::Test {
protected:
virtual void SetUp() {
// The code needs to work when both ::string and ::std::string are
// defined and the flag is implemented as a
// testing::internal::String. In this case, without the call to
// c_str(), the compiler will complain that it cannot figure out
// whether the String flag should be converted to a ::string or an
// ::std::string before being assigned to original_verbose_.
original_verbose_ = GMOCK_FLAG(verbose).c_str();
}
virtual void TearDown() { GMOCK_FLAG(verbose) = original_verbose_; }
string original_verbose_;
};
TEST_F(LogIsVisibleTest, AlwaysReturnsTrueIfVerbosityIsInfo) {
GMOCK_FLAG(verbose) = kInfoVerbosity;
EXPECT_TRUE(LogIsVisible(INFO));
EXPECT_TRUE(LogIsVisible(WARNING));
}
TEST_F(LogIsVisibleTest, AlwaysReturnsFalseIfVerbosityIsError) {
GMOCK_FLAG(verbose) = kErrorVerbosity;
EXPECT_FALSE(LogIsVisible(INFO));
EXPECT_FALSE(LogIsVisible(WARNING));
}
TEST_F(LogIsVisibleTest, WorksWhenVerbosityIsWarning) {
GMOCK_FLAG(verbose) = kWarningVerbosity;
EXPECT_FALSE(LogIsVisible(INFO));
EXPECT_TRUE(LogIsVisible(WARNING));
}
// TODO(wan@google.com): find a way to re-enable these tests.
#if 0
// Tests the Log() function.
// Verifies that Log() behaves correctly for the given verbosity level
// and log severity.
void TestLogWithSeverity(const string& verbosity, LogSeverity severity,
bool should_print) {
const string old_flag = GMOCK_FLAG(verbose);
GMOCK_FLAG(verbose) = verbosity;
CaptureTestStdout();
Log(severity, "Test log.\n", 0);
if (should_print) {
EXPECT_PRED2(RE::FullMatch,
GetCapturedTestStdout(),
severity == WARNING ?
"\nGMOCK WARNING:\nTest log\\.\nStack trace:\n[\\s\\S]*" :
"\nTest log\\.\nStack trace:\n[\\s\\S]*");
} else {
EXPECT_EQ("", GetCapturedTestStdout());
}
GMOCK_FLAG(verbose) = old_flag;
}
// Tests that when the stack_frames_to_skip parameter is negative,
// Log() doesn't include the stack trace in the output.
TEST(LogTest, NoStackTraceWhenStackFramesToSkipIsNegative) {
GMOCK_FLAG(verbose) = kInfoVerbosity;
CaptureTestStdout();
Log(INFO, "Test log.\n", -1);
EXPECT_EQ("\nTest log.\n", GetCapturedTestStdout());
}
// Tests that in opt mode, a positive stack_frames_to_skip argument is
// treated as 0.
TEST(LogTest, NoSkippingStackFrameInOptMode) {
CaptureTestStdout();
Log(WARNING, "Test log.\n", 100);
const string log = GetCapturedTestStdout();
#ifdef NDEBUG
// In opt mode, no stack frame should be skipped.
EXPECT_THAT(log, ContainsRegex("\nGMOCK WARNING:\n"
"Test log\\.\n"
"Stack trace:\n"
".+"));
#else
// In dbg mode, the stack frames should be skipped.
EXPECT_EQ("\nGMOCK WARNING:\n"
"Test log.\n"
"Stack trace:\n", log);
#endif // NDEBUG
}
// Tests that all logs are printed when the value of the
// --gmock_verbose flag is "info".
TEST(LogTest, AllLogsArePrintedWhenVerbosityIsInfo) {
TestLogWithSeverity(kInfoVerbosity, INFO, true);
TestLogWithSeverity(kInfoVerbosity, WARNING, true);
}
// Tests that only warnings are printed when the value of the
// --gmock_verbose flag is "warning".
TEST(LogTest, OnlyWarningsArePrintedWhenVerbosityIsWarning) {
TestLogWithSeverity(kWarningVerbosity, INFO, false);
TestLogWithSeverity(kWarningVerbosity, WARNING, true);
}
// Tests that no logs are printed when the value of the
// --gmock_verbose flag is "error".
TEST(LogTest, NoLogsArePrintedWhenVerbosityIsError) {
TestLogWithSeverity(kErrorVerbosity, INFO, false);
TestLogWithSeverity(kErrorVerbosity, WARNING, false);
}
// Tests that only warnings are printed when the value of the
// --gmock_verbose flag is invalid.
TEST(LogTest, OnlyWarningsArePrintedWhenVerbosityIsInvalid) {
TestLogWithSeverity("invalid", INFO, false);
TestLogWithSeverity("invalid", WARNING, true);
}
#endif // 0
TEST(TypeTraitsTest, true_type) {
EXPECT_TRUE(true_type::value);
}
TEST(TypeTraitsTest, false_type) {
EXPECT_FALSE(false_type::value);
}
TEST(TypeTraitsTest, is_reference) {
EXPECT_FALSE(is_reference<int>::value);
EXPECT_FALSE(is_reference<char*>::value);
EXPECT_TRUE(is_reference<const int&>::value);
}
TEST(TypeTraitsTest, is_pointer) {
EXPECT_FALSE(is_pointer<int>::value);
EXPECT_FALSE(is_pointer<char&>::value);
EXPECT_TRUE(is_pointer<const int*>::value);
}
TEST(TypeTraitsTest, type_equals) {
EXPECT_FALSE((type_equals<int, const int>::value));
EXPECT_FALSE((type_equals<int, int&>::value));
EXPECT_FALSE((type_equals<int, double>::value));
EXPECT_TRUE((type_equals<char, char>::value));
}
TEST(TypeTraitsTest, remove_reference) {
EXPECT_TRUE((type_equals<char, remove_reference<char&>::type>::value));
EXPECT_TRUE((type_equals<const int,
remove_reference<const int&>::type>::value));
EXPECT_TRUE((type_equals<int, remove_reference<int>::type>::value));
EXPECT_TRUE((type_equals<double*, remove_reference<double*>::type>::value));
}
// TODO(wan@google.com): find a way to re-enable these tests.
#if 0
// Verifies that Log() behaves correctly for the given verbosity level
// and log severity.
string GrabOutput(void(*logger)(), const char* verbosity) {
const string saved_flag = GMOCK_FLAG(verbose);
GMOCK_FLAG(verbose) = verbosity;
CaptureTestStdout();
logger();
GMOCK_FLAG(verbose) = saved_flag;
return GetCapturedTestStdout();
}
class DummyMock {
public:
MOCK_METHOD0(TestMethod, void());
MOCK_METHOD1(TestMethodArg, void(int dummy));
};
void ExpectCallLogger() {
DummyMock mock;
EXPECT_CALL(mock, TestMethod());
mock.TestMethod();
};
// Verifies that EXPECT_CALL logs if the --gmock_verbose flag is set to "info".
TEST(ExpectCallTest, LogsWhenVerbosityIsInfo) {
EXPECT_THAT(GrabOutput(ExpectCallLogger, kInfoVerbosity),
HasSubstr("EXPECT_CALL(mock, TestMethod())"));
}
// Verifies that EXPECT_CALL doesn't log
// if the --gmock_verbose flag is set to "warning".
TEST(ExpectCallTest, DoesNotLogWhenVerbosityIsWarning) {
EXPECT_EQ("", GrabOutput(ExpectCallLogger, kWarningVerbosity));
}
// Verifies that EXPECT_CALL doesn't log
// if the --gmock_verbose flag is set to "error".
TEST(ExpectCallTest, DoesNotLogWhenVerbosityIsError) {
EXPECT_EQ("", GrabOutput(ExpectCallLogger, kErrorVerbosity));
}
void OnCallLogger() {
DummyMock mock;
ON_CALL(mock, TestMethod());
};
// Verifies that ON_CALL logs if the --gmock_verbose flag is set to "info".
TEST(OnCallTest, LogsWhenVerbosityIsInfo) {
EXPECT_THAT(GrabOutput(OnCallLogger, kInfoVerbosity),
HasSubstr("ON_CALL(mock, TestMethod())"));
}
// Verifies that ON_CALL doesn't log
// if the --gmock_verbose flag is set to "warning".
TEST(OnCallTest, DoesNotLogWhenVerbosityIsWarning) {
EXPECT_EQ("", GrabOutput(OnCallLogger, kWarningVerbosity));
}
// Verifies that ON_CALL doesn't log if
// the --gmock_verbose flag is set to "error".
TEST(OnCallTest, DoesNotLogWhenVerbosityIsError) {
EXPECT_EQ("", GrabOutput(OnCallLogger, kErrorVerbosity));
}
void OnCallAnyArgumentLogger() {
DummyMock mock;
ON_CALL(mock, TestMethodArg(_));
}
// Verifies that ON_CALL prints provided _ argument.
TEST(OnCallTest, LogsAnythingArgument) {
EXPECT_THAT(GrabOutput(OnCallAnyArgumentLogger, kInfoVerbosity),
HasSubstr("ON_CALL(mock, TestMethodArg(_)"));
}
#endif // 0
// Tests ArrayEq().
TEST(ArrayEqTest, WorksForDegeneratedArrays) {
EXPECT_TRUE(ArrayEq(5, 5L));
EXPECT_FALSE(ArrayEq('a', 0));
}
TEST(ArrayEqTest, WorksForOneDimensionalArrays) {
const int a[] = { 0, 1 };
long b[] = { 0, 1 };
EXPECT_TRUE(ArrayEq(a, b));
EXPECT_TRUE(ArrayEq(a, 2, b));
b[0] = 2;
EXPECT_FALSE(ArrayEq(a, b));
EXPECT_FALSE(ArrayEq(a, 1, b));
}
TEST(ArrayEqTest, WorksForTwoDimensionalArrays) {
const char a[][3] = { "hi", "lo" };
const char b[][3] = { "hi", "lo" };
const char c[][3] = { "hi", "li" };
EXPECT_TRUE(ArrayEq(a, b));
EXPECT_TRUE(ArrayEq(a, 2, b));
EXPECT_FALSE(ArrayEq(a, c));
EXPECT_FALSE(ArrayEq(a, 2, c));
}
// Tests ArrayAwareFind().
TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) {
const char a[] = "hello";
EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o'));
EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x'));
}
TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) {
int a[][2] = { { 0, 1 }, { 2, 3 }, { 4, 5 } };
const int b[2] = { 2, 3 };
EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b));
const int c[2] = { 6, 7 };
EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c));
}
// Tests CopyArray().
TEST(CopyArrayTest, WorksForDegeneratedArrays) {
int n = 0;
CopyArray('a', &n);
EXPECT_EQ('a', n);
}
TEST(CopyArrayTest, WorksForOneDimensionalArrays) {
const char a[3] = "hi";
int b[3];
CopyArray(a, &b);
EXPECT_TRUE(ArrayEq(a, b));
int c[3];
CopyArray(a, 3, c);
EXPECT_TRUE(ArrayEq(a, c));
}
TEST(CopyArrayTest, WorksForTwoDimensionalArrays) {
const int a[2][3] = { { 0, 1, 2 }, { 3, 4, 5 } };
int b[2][3];
CopyArray(a, &b);
EXPECT_TRUE(ArrayEq(a, b));
int c[2][3];
CopyArray(a, 2, c);
EXPECT_TRUE(ArrayEq(a, c));
}
// Tests NativeArray.
TEST(NativeArrayTest, ConstructorFromArrayReferenceWorks) {
const int a[3] = { 0, 1, 2 };
NativeArray<int> na(a, kReference);
EXPECT_EQ(3, na.size());
EXPECT_EQ(a, na.begin());
}
TEST(NativeArrayTest, ConstructorFromTupleWorks) {
int a[3] = { 0, 1, 2 };
int* const p = a;
// Tests with a plain pointer.
NativeArray<int> na(make_tuple(p, 3U), kReference);
EXPECT_EQ(a, na.begin());
const linked_ptr<char> b(new char);
*b = 'a';
// Tests with a smart pointer.
NativeArray<char> nb(make_tuple(b, 1), kCopy);
EXPECT_NE(b.get(), nb.begin());
EXPECT_EQ('a', nb.begin()[0]);
}
TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) {
typedef int Array[2];
Array* a = new Array[1];
(*a)[0] = 0;
(*a)[1] = 1;
NativeArray<int> na(*a, kCopy);
EXPECT_NE(*a, na.begin());
delete[] a;
EXPECT_EQ(0, na.begin()[0]);
EXPECT_EQ(1, na.begin()[1]);
// We rely on the heap checker to verify that na deletes the copy of
// array.
}
TEST(NativeArrayTest, TypeMembersAreCorrect) {
StaticAssertTypeEq<char, NativeArray<char>::value_type>();
StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>();
StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>();
StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>();
}
TEST(NativeArrayTest, MethodsWork) {
const int a[] = { 0, 1, 2 };
NativeArray<int> na(a, kCopy);
ASSERT_EQ(3, na.size());
EXPECT_EQ(3, na.end() - na.begin());
NativeArray<int>::const_iterator it = na.begin();
EXPECT_EQ(0, *it);
++it;
EXPECT_EQ(1, *it);
it++;
EXPECT_EQ(2, *it);
++it;
EXPECT_EQ(na.end(), it);
EXPECT_THAT(na, Eq(na));
NativeArray<int> na2(a, kReference);
EXPECT_THAT(na, Eq(na2));
const int b1[] = { 0, 1, 1 };
const int b2[] = { 0, 1, 2, 3 };
EXPECT_THAT(na, Not(Eq(NativeArray<int>(b1, kReference))));
EXPECT_THAT(na, Not(Eq(NativeArray<int>(b2, kCopy))));
}
TEST(NativeArrayTest, WorksForTwoDimensionalArray) {
const char a[2][3] = { "hi", "lo" };
NativeArray<char[3]> na(a, kReference);
ASSERT_EQ(2, na.size());
EXPECT_EQ(a, na.begin());
}
// Tests StlContainerView.
TEST(StlContainerViewTest, WorksForStlContainer) {
StaticAssertTypeEq<std::vector<int>,
StlContainerView<std::vector<int> >::type>();
StaticAssertTypeEq<const std::vector<double>&,
StlContainerView<std::vector<double> >::const_reference>();
typedef std::vector<char> Chars;
Chars v1;
const Chars& v2(StlContainerView<Chars>::ConstReference(v1));
EXPECT_EQ(&v1, &v2);
v1.push_back('a');
Chars v3 = StlContainerView<Chars>::Copy(v1);
EXPECT_THAT(v3, Eq(v3));
}
TEST(StlContainerViewTest, WorksForStaticNativeArray) {
StaticAssertTypeEq<NativeArray<int>,
StlContainerView<int[3]>::type>();
StaticAssertTypeEq<NativeArray<double>,
StlContainerView<const double[4]>::type>();
StaticAssertTypeEq<NativeArray<char[3]>,
StlContainerView<const char[2][3]>::type>();
StaticAssertTypeEq<const NativeArray<int>,
StlContainerView<int[2]>::const_reference>();
int a1[3] = { 0, 1, 2 };
NativeArray<int> a2 = StlContainerView<int[3]>::ConstReference(a1);
EXPECT_EQ(3, a2.size());
EXPECT_EQ(a1, a2.begin());
const NativeArray<int> a3 = StlContainerView<int[3]>::Copy(a1);
ASSERT_EQ(3, a3.size());
EXPECT_EQ(0, a3.begin()[0]);
EXPECT_EQ(1, a3.begin()[1]);
EXPECT_EQ(2, a3.begin()[2]);
// Makes sure a1 and a3 aren't aliases.
a1[0] = 3;
EXPECT_EQ(0, a3.begin()[0]);
}
TEST(StlContainerViewTest, WorksForDynamicNativeArray) {
StaticAssertTypeEq<NativeArray<int>,
StlContainerView<tuple<const int*, size_t> >::type>();
StaticAssertTypeEq<NativeArray<double>,
StlContainerView<tuple<linked_ptr<double>, int> >::type>();
StaticAssertTypeEq<const NativeArray<int>,
StlContainerView<tuple<const int*, int> >::const_reference>();
int a1[3] = { 0, 1, 2 };
const int* const p1 = a1;
NativeArray<int> a2 = StlContainerView<tuple<const int*, int> >::
ConstReference(make_tuple(p1, 3));
EXPECT_EQ(3, a2.size());
EXPECT_EQ(a1, a2.begin());
const NativeArray<int> a3 = StlContainerView<tuple<int*, size_t> >::
Copy(make_tuple(static_cast<int*>(a1), 3));
ASSERT_EQ(3, a3.size());
EXPECT_EQ(0, a3.begin()[0]);
EXPECT_EQ(1, a3.begin()[1]);
EXPECT_EQ(2, a3.begin()[2]);
// Makes sure a1 and a3 aren't aliases.
a1[0] = 3;
EXPECT_EQ(0, a3.begin()[0]);
}
} // namespace
} // namespace internal
} // namespace testing