googletest/include/gmock/gmock-generated-matchers.h.pump

517 lines
17 KiB
C++

$$ -*- mode: c++; -*-
$$ This is a Pump source file. Please use Pump to convert it to
$$ gmock-generated-variadic-actions.h.
$$
$var n = 10 $$ The maximum arity we support.
// Copyright 2008, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Google Mock - a framework for writing C++ mock classes.
//
// This file implements some commonly used variadic matchers.
#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_
#define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_
#include <sstream>
#include <string>
#include <vector>
#include <gmock/gmock-matchers.h>
namespace testing {
namespace internal {
// Generates a non-fatal failure iff 'description' is not a valid
// matcher description.
inline void ValidateMatcherDescription(const char* description) {
EXPECT_STREQ("", description)
<< "The description string in a MATCHER*() macro must be \"\" "
"at this moment. We will implement custom description string soon.";
}
// Implements ElementsAre() and ElementsAreArray().
template <typename Container>
class ElementsAreMatcherImpl : public MatcherInterface<Container> {
public:
typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container)) RawContainer;
typedef typename RawContainer::value_type Element;
// Constructs the matcher from a sequence of element values or
// element matchers.
template <typename InputIter>
ElementsAreMatcherImpl(InputIter first, size_t count) {
matchers_.reserve(count);
InputIter it = first;
for (size_t i = 0; i != count; ++i, ++it) {
matchers_.push_back(MatcherCast<const Element&>(*it));
}
}
// Returns true iff 'container' matches.
virtual bool Matches(Container container) const {
if (container.size() != count())
return false;
typename RawContainer::const_iterator container_iter = container.begin();
for (size_t i = 0; i != count(); ++container_iter, ++i) {
if (!matchers_[i].Matches(*container_iter))
return false;
}
return true;
}
// Describes what this matcher does.
virtual void DescribeTo(::std::ostream* os) const {
if (count() == 0) {
*os << "is empty";
} else if (count() == 1) {
*os << "has 1 element that ";
matchers_[0].DescribeTo(os);
} else {
*os << "has " << Elements(count()) << " where\n";
for (size_t i = 0; i != count(); ++i) {
*os << "element " << i << " ";
matchers_[i].DescribeTo(os);
if (i + 1 < count()) {
*os << ",\n";
}
}
}
}
// Describes what the negation of this matcher does.
virtual void DescribeNegationTo(::std::ostream* os) const {
if (count() == 0) {
*os << "is not empty";
return;
}
*os << "does not have " << Elements(count()) << ", or\n";
for (size_t i = 0; i != count(); ++i) {
*os << "element " << i << " ";
matchers_[i].DescribeNegationTo(os);
if (i + 1 < count()) {
*os << ", or\n";
}
}
}
// Explains why 'container' matches, or doesn't match, this matcher.
virtual void ExplainMatchResultTo(Container container,
::std::ostream* os) const {
if (Matches(container)) {
// We need to explain why *each* element matches (the obvious
// ones can be skipped).
bool reason_printed = false;
typename RawContainer::const_iterator container_iter = container.begin();
for (size_t i = 0; i != count(); ++container_iter, ++i) {
::std::stringstream ss;
matchers_[i].ExplainMatchResultTo(*container_iter, &ss);
const string s = ss.str();
if (!s.empty()) {
if (reason_printed) {
*os << ",\n";
}
*os << "element " << i << " " << s;
reason_printed = true;
}
}
} else {
// We need to explain why the container doesn't match.
const size_t actual_count = container.size();
if (actual_count != count()) {
// The element count doesn't match. If the container is
// empty, there's no need to explain anything as Google Mock
// already prints the empty container. Otherwise we just need
// to show how many elements there actually are.
if (actual_count != 0) {
*os << "has " << Elements(actual_count);
}
return;
}
// The container has the right size but at least one element
// doesn't match expectation. We need to find this element and
// explain why it doesn't match.
typename RawContainer::const_iterator container_iter = container.begin();
for (size_t i = 0; i != count(); ++container_iter, ++i) {
if (matchers_[i].Matches(*container_iter)) {
continue;
}
*os << "element " << i << " doesn't match";
::std::stringstream ss;
matchers_[i].ExplainMatchResultTo(*container_iter, &ss);
const string s = ss.str();
if (!s.empty()) {
*os << " (" << s << ")";
}
return;
}
}
}
private:
static Message Elements(size_t count) {
return Message() << count << (count == 1 ? " element" : " elements");
}
size_t count() const { return matchers_.size(); }
std::vector<Matcher<const Element&> > matchers_;
};
// Implements ElementsAre() of 0-10 arguments.
class ElementsAreMatcher0 {
public:
ElementsAreMatcher0() {}
template <typename Container>
operator Matcher<Container>() const {
typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container))
RawContainer;
typedef typename RawContainer::value_type Element;
const Matcher<const Element&>* const matchers = NULL;
return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, 0));
}
};
$range i 1..n
$for i [[
$range j 1..i
template <$for j, [[typename T$j]]>
class ElementsAreMatcher$i {
public:
$if i==1 [[explicit ]]ElementsAreMatcher$i($for j, [[const T$j& e$j]])$if i > 0 [[ : ]]
$for j, [[e$j[[]]_(e$j)]] {}
template <typename Container>
operator Matcher<Container>() const {
typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container))
RawContainer;
typedef typename RawContainer::value_type Element;
const Matcher<const Element&> matchers[] = {
$for j [[
MatcherCast<const Element&>(e$j[[]]_),
]]
};
return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, $i));
}
private:
$for j [[
const T$j& e$j[[]]_;
]]
};
]]
// Implements ElementsAreArray().
template <typename T>
class ElementsAreArrayMatcher {
public:
ElementsAreArrayMatcher(const T* first, size_t count) :
first_(first), count_(count) {}
template <typename Container>
operator Matcher<Container>() const {
typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container))
RawContainer;
typedef typename RawContainer::value_type Element;
return MakeMatcher(new ElementsAreMatcherImpl<Container>(first_, count_));
}
private:
const T* const first_;
const size_t count_;
};
} // namespace internal
// ElementsAre(e0, e1, ..., e_n) matches an STL-style container with
// (n + 1) elements, where the i-th element in the container must
// match the i-th argument in the list. Each argument of
// ElementsAre() can be either a value or a matcher. We support up to
// $n arguments.
//
// NOTE: Since ElementsAre() cares about the order of the elements, it
// must not be used with containers whose elements's order is
// undefined (e.g. hash_map).
inline internal::ElementsAreMatcher0 ElementsAre() {
return internal::ElementsAreMatcher0();
}
$for i [[
$range j 1..i
template <$for j, [[typename T$j]]>
inline internal::ElementsAreMatcher$i<$for j, [[T$j]]> ElementsAre($for j, [[const T$j& e$j]]) {
return internal::ElementsAreMatcher$i<$for j, [[T$j]]>($for j, [[e$j]]);
}
]]
// ElementsAreArray(array) and ElementAreArray(array, count) are like
// ElementsAre(), except that they take an array of values or
// matchers. The former form infers the size of 'array', which must
// be a static C-style array. In the latter form, 'array' can either
// be a static array or a pointer to a dynamically created array.
template <typename T>
inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
const T* first, size_t count) {
return internal::ElementsAreArrayMatcher<T>(first, count);
}
template <typename T, size_t N>
inline internal::ElementsAreArrayMatcher<T>
ElementsAreArray(const T (&array)[N]) {
return internal::ElementsAreArrayMatcher<T>(array, N);
}
} // namespace testing
// The MATCHER* family of macros can be used in a namespace scope to
// define custom matchers easily. The syntax:
//
// MATCHER(name, description_string) { statements; }
//
// will define a matcher with the given name that executes the
// statements, which must return a bool to indicate if the match
// succeeds. For now, the description_string must be "", but we'll
// allow other values soon. Inside the statements, you can refer to
// the value being matched by 'arg', and refer to its type by
// 'arg_type'. For example:
//
// MATCHER(IsEven, "") { return (arg % 2) == 0; }
//
// allows you to write
//
// // Expects mock_foo.Bar(n) to be called where n is even.
// EXPECT_CALL(mock_foo, Bar(IsEven()));
//
// or,
//
// // Verifies that the value of some_expression is even.
// EXPECT_THAT(some_expression, IsEven());
//
// If the above assertion fails, it will print something like:
//
// Value of: some_expression
// Expected: is even
// Actual: 7
//
// where the description "is even" is automatically calculated from the
// matcher name IsEven.
//
// Note that the type of the value being matched (arg_type) is
// determined by the context in which you use the matcher and is
// supplied to you by the compiler, so you don't need to worry about
// declaring it (nor can you). This allows the matcher to be
// polymorphic. For example, IsEven() can be used to match any type
// where the value of "(arg % 2) == 0" can be implicitly converted to
// a bool. In the "Bar(IsEven())" example above, if method Bar()
// takes an int, 'arg_type' will be int; if it takes an unsigned long,
// 'arg_type' will be unsigned long; and so on.
//
// Sometimes you'll want to parameterize the matcher. For that you
// can use another macro:
//
// MATCHER_P(name, param_name, description_string) { statements; }
//
// For example:
//
// MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; }
//
// will allow you to write:
//
// EXPECT_THAT(Blah("a"), HasAbsoluteValue(n));
//
// which may lead to this message (assuming n is 10):
//
// Value of: Blah("a")
// Expected: has absolute value 10
// Actual: -9
//
// Note that both the matcher description and its parameter are
// printed, making the message human-friendly.
//
// In the matcher definition body, you can write 'foo_type' to
// reference the type of a parameter named 'foo'. For example, in the
// body of MATCHER_P(HasAbsoluteValue, value) above, you can write
// 'value_type' to refer to the type of 'value'.
//
// We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to
// support multi-parameter matchers.
//
// For the purpose of typing, you can view
//
// MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... }
//
// as shorthand for
//
// template <typename p1_type, ..., typename pk_type>
// FooMatcherPk<p1_type, ..., pk_type>
// Foo(p1_type p1, ..., pk_type pk) { ... }
//
// When you write Foo(v1, ..., vk), the compiler infers the types of
// the parameters v1, ..., and vk for you. If you are not happy with
// the result of the type inference, you can specify the types by
// explicitly instantiating the template, as in Foo<long, bool>(5,
// false). As said earlier, you don't get to (or need to) specify
// 'arg_type' as that's determined by the context in which the matcher
// is used. You can assign the result of expression Foo(p1, ..., pk)
// to a variable of type FooMatcherPk<p1_type, ..., pk_type>. This
// can be useful when composing matchers.
//
// While you can instantiate a matcher template with reference types,
// passing the parameters by pointer usually makes your code more
// readable. If, however, you still want to pass a parameter by
// reference, be aware that in the failure message generated by the
// matcher you will see the value of the referenced object but not its
// address.
//
// You can overload matchers with different numbers of parameters:
//
// MATCHER_P(Blah, a, description_string1) { ... }
// MATCHER_P2(Blah, a, b, description_string2) { ... }
//
// While it's tempting to always use the MATCHER* macros when defining
// a new matcher, you should also consider implementing
// MatcherInterface or using MakePolymorphicMatcher() instead,
// especially if you need to use the matcher a lot. While these
// approaches require more work, they give you more control on the
// types of the value being matched and the matcher parameters, which
// in general leads to better compiler error messages that pay off in
// the long run. They also allow overloading matchers based on
// parameter types (as opposed to just based on the number of
// parameters).
//
// CAVEAT:
//
// MATCHER*() can only be used in a namespace scope. The reason is
// that C++ doesn't yet allow function-local types to be used to
// instantiate templates. The up-coming C++0x standard will fix this.
// Once that's done, we'll consider supporting using MATCHER*() inside
// a function.
//
// MORE INFORMATION:
//
// To learn more about using these macros, please search for 'MATCHER'
// on http://code.google.com/p/googlemock/wiki/CookBook.
$range i 0..n
$for i
[[
$var macro_name = [[$if i==0 [[MATCHER]] $elif i==1 [[MATCHER_P]]
$else [[MATCHER_P$i]]]]
$var class_name = [[name##Matcher[[$if i==0 [[]] $elif i==1 [[P]]
$else [[P$i]]]]]]
$range j 0..i-1
$var template = [[$if i==0 [[]] $else [[
template <$for j, [[typename p$j##_type]]>\
]]]]
$var ctor_param_list = [[$for j, [[p$j##_type gmock_p$j]]]]
$var inits = [[$if i==0 [[]] $else [[ : $for j, [[p$j(gmock_p$j)]]]]]]
$var params = [[$for j, [[p$j]]]]
$var param_types = [[$if i==0 [[]] $else [[<$for j, [[p$j##_type]]>]]]]
$var param_types_and_names = [[$for j, [[p$j##_type p$j]]]]
$var param_field_decls = [[$for j
[[
p$j##_type p$j;\
]]]]
$var param_field_decls2 = [[$for j
[[
p$j##_type p$j;\
]]]]
#define $macro_name(name$for j [[, p$j]], description)\$template
class $class_name {\
public:\
template <typename arg_type>\
class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\
public:\
[[$if i==1 [[explicit ]]]]gmock_Impl($ctor_param_list)$inits {}\
virtual bool Matches(arg_type arg) const;\
virtual void DescribeTo(::std::ostream* os) const {\
*os << ::testing::internal::ConvertIdentifierNameToWords(#name);\
[[$if i==1 [[ *os << " ";\
::testing::internal::UniversalPrint(p0, os);\
]] $elif i>=2 [[ *os << " (";\
::testing::internal::UniversalPrint(p0, os);\
$range k 1..i-1
$for k [[
*os << ", ";\
::testing::internal::UniversalPrint(p$k, os);\
]]
*os << ")";\
]]]]
}\$param_field_decls
};\
template <typename arg_type>\
operator ::testing::Matcher<arg_type>() const {\
return ::testing::Matcher<arg_type>(new gmock_Impl<arg_type>($params));\
}\
$class_name($ctor_param_list)$inits {\
::testing::internal::ValidateMatcherDescription(description);\
}\$param_field_decls2
};\$template
inline $class_name$param_types name($param_types_and_names) {\
return $class_name$param_types($params);\
}\$template
template <typename arg_type>\
bool $class_name$param_types::\
gmock_Impl<arg_type>::Matches(arg_type arg) const
]]
#endif // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_