import numpy from keras.models import load_model from data import load_pay_data, load_gift_data import matplotlib.pyplot as plt x_train, y_train, tx_train, ty_train, _ = load_gift_data(160) model = load_model("./predict_gift") p_data = model.predict(tx_train) for i in range(len(p_data)): comp = (p_data[i][0] - ty_train[i]) / ty_train[i] print(comp, p_data[i][0], ty_train[i]) if abs(comp) >= 0.1: print("测结果:", p_data[i][0], "测:", tx_train[i], "真实:", ty_train[i]) plt.plot(ty_train) plt.plot(p_data) plt.show()