predict-coin/train_pay.py

39 lines
932 B
Python

from keras.models import Sequential
from keras.layers import Dense, Dropout, Embedding
from keras.layers import InputLayer
from keras.layers import LSTM
from keras import backend
import pymysql
import pickle
import os
import numpy
from data import load_pay_data
if __name__ == "__main__":
x_train, y_train, tx_train, ty_train = load_pay_data(80)
model = Sequential()
units = 500
model.add(LSTM(units, activation='relu', input_shape=(3,1)))
model.add(Dropout(0.3))
model.add(Dense(1))
model.summary()
model.compile(loss='mse', optimizer='adam')
model.fit(x_train, y_train, batch_size=1, epochs=50)
model.save("./predict_pay")
p_data = model.predict(tx_train)
for i in range(len(p_data)):
print((p_data[i][0] - ty_train[i]) / ty_train[i], p_data[i][0], ty_train[i])
# print("测结果:", p_data[i][0], "测:", tx_train[i], "真实:", ty_train[i])